Чему равна сумма углов многоугольника. Правильный многоугольник

Вашего многоугольника . Например, если вам нужно найти углы правильного многоугольника с 15 сторонами, подставьте n=15 в уравнение. У вас получится S=180⁰(15-2), S=180⁰х13, S=2340⁰.

Далее разделите полученную сумму внутренних углов на их количество. Например, в с многоугольником количество углов количеству сторон, то есть 15. Таким образом, вы получите, что угол равен 2340⁰/15=156⁰. Каждый внутренний угол многоугольника равен 156⁰.

Если вам удобнее рассчитать углы многоугольника в радианах, действуйте следующим образом. Вычтите из количества сторон число 2 и умножьте полученную разность на число П (Пи). Затем разделите произведение на количество углов в многоугольнике. Например, если вам нужно рассчитать углы правильного 15-угольника, действуйте так: П*(15-2)/15=13/15П, или 0,87П, или 2,72 (но, как , число П остается в неизменном виде). Либо просто разделите размер угла в градусах на 57,3 - именно столько содержится в одном радиане.

Также можете попробовать рассчитать углы правильного многоугольника в градах. Для этого вычтите из количества сторон число 2, разделите полученное число на количество сторон и умножьте результат на 200. Эта углов почти не используется, но если вы решили углы в градах, не забудьте, что град разбивается на метрические секунды и минуты (по 100 секунд ).

Возможно, вам необходимо рассчитать внешний угол правильного многоугольника , в этом случае поступайте так. Вычтите из 180⁰ внутренний угол – в результате вы получите значение смежного, то есть внешнего угла. Он может от -180⁰ до +180⁰.

Полезный совет

Если вам удалось узнать углы правильного многоугольника – вы сможете легко его построить. Начертите одну сторону определенной длины и от нее при помощи транспортира отложите нужный угол. Отмерьте точно такое же расстояние (все стороны правильного многоугольник равны) и снова отложите нужный угол. Продолжайте, пока стороны не сомкнутся.

Источники:

  • угол в правильном многоугольнике

Многоугольник состоит из нескольких отрезков, соединенных между собой и образующих замкнутую линию. Все фигуры этого класса делятся на простые и сложные. К простым относятся треугольник и четырехугольник, а к сложным - многоугольники с большим количеством сторон , а также звездчатые многоугольники.

Инструкция

Наиболее часто в задачах встречается правильный треугольник со сторон ой a. Поскольку многоугольник является правильным, то все три его сторон ы равны. Следовательно, зная медиану и высоту треугольника, можно найти все его сторон ы. Для этого используйте способ нахождения сторон ы :a=x/cosα.Так как сторон ы , т.е. a=b=c=a, a=b=c=x/cosα, где x - высота, медиана или биссектриса.Аналогичным образом находите все три неизвестные сторон ы в равнобедренном треугольнике, но при одном условии - заданной высоте. Она должна проецироваться на основание треугольника. Зная высоту основания x, найдите сторон у a:a=x/cosα.Поскольку a=b, так как треугольник равнобедренный, найдите его сторон ы следующим образом:a=b=x/cosα.После того как вы нашли боковые сторон ы треугольника, вычислите длину основания треугольника, применяя теорему Пифагора для нахождения половины основания:c/2=√(x/cosα)^2-(x^2)=√x^2 (1-cos^2α)/ cos^2α=xtgα.Отсюда найдите основание:c=2xtgα.

Квадрат представляет собой , сторон ы которого вычисляются несколькими способами. Ниже рассмотрен каждый из них.Первый способ предлагает нахождение сторон ы квадрата. Поскольку все углы у квадрата прямые, данная их пополам таким образом, что образуются два прямоугольных треугольника с углами 45 градусов при . Соответственно, сторон а квадрата равна:a=b=c=f=d*cosα=d√2/2, где d - квадрата.Если квадрат вписан в окружность, то зная радиус этой окружности, найдите его сторон у:a4=R√2, где R - радиус окружности.


Тип урока: урок практикум, комбинированный урок.

Цели урока:

1. Вывести формулу, выражающую сумму углов выпуклого многоугольника

2. Развитие логического мышления и внимания

3. Воспитание культуры умственного труда

Оборудование: таблица «Сумма углов выпуклого многоугольника», рабочая тетрадь по геометрии, набор моделей выпуклых многоугольников.

Используемые технологии: элементы технологии критического мышления, здоровьесберегающие технологии, технология проблемного обучения.

Ход урока:

I . Эмоциональное начало урока:

Здравствуйте, ребята. Здравствуйте, гости. Ребята, поднимите на меня глаза. Я волнуюсь, а вы? Какое у вас настроение? Давайте поддержим друг друга, улыбнемся друг другу, и я уверена – мы вместе преодолеем все трудности, мы это сможем.

Как вы думаете, о чем сегодня пойдет речь на уроке? Затрудняетесь? Мы не будем пока формулировать тему нашего урока, вернемся к ней позже, в ходе работы.

II . Актуализация знаний:

Математический диктант (фронтально) с последующей проверкой на обороте доски. На обороте доски работает ученик.

Цель этого задания: повторить все необходимые сведения для дальнейшей работы.

Вид проверки: взаимо- или самопроверка, выбирают сами учащиеся.

Учитель по выбору учащихся проверяет 2-3 работы. Оценка ставится по количеству правильных ответов.

Диктант:

1 Многоугольник с n вершинами называется… (n -угольником).

2. Отрезок, соединяющий любые две несоседние вершины, называется… (диагональю многоугольника).

3. Если многоугольник лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины, то он называется… (выпуклым).

4. Две вершины четырехугольника, не являющиеся соседними, называются… (противоположными).

5. Чему равна сумма градусных мер всех углов треуглоьника?.. (180°).

Итоги: понятие n -угольника, его диагоналей, выпуклого многоугольника, его противоположных вершин, суммы градусных мер всех углов треугольника мы применим на следующем этапе нашего урока, выполняя лабораторную работу.

III . Изучение нового материала:

Лабораторная работа (в парах).

Цель работы: вывести экспериментально формулу, выражающую сумму углов выпуклого многоугольника.

Указание к работе:

1. Постройте три выпуклых многоугольника.

2. Из одной вершины проведите диагонали.

3. Сравните число сторон многоугольника с числом получившихся треугольников.

4. Выразите сумму углов каждого многоугольника через сумму углов треугольника.

Результаты занесите в таблицу (несколько учащихся записывают на доске свои результаты)

Можно ли сейчас сформулировать тему урока?

- Тема: «Сумма углов выпуклого многоугольника»

5. Сформулируйте гипотезу: «Сумма углов выпуклого n -угольника равна (n -2) ٠ 180°»

Подтвердим эту гипотезу, прочитав вывод формулы на странице 99 учебника. Запишем формулу в тетрадь. Учащиеся оценивают результаты своей лабораторной работы по пятибалльной системе.

IV . Здоровьесберегающая пауза.

Цель: предупредить переутомляемость, сохранить здоровье учащихся, связав упражнения с элементами, входящими в тему урока (с углами различных видов).

Дети сидят за партой. Предложить им сесть под углом 90°.

Ребята, встаньте. Руками изобразите развернутый угол. Поднимая правую руку, покажите прямой угол. Сделайте то же самое, поднимая левую руку. Затем поочередно изобразите тупой, а затем и острый углы. Садитесь.

V . Закрепление изученного материала.

Цель: научить учащихся решать прямую и обратную задачи, применяя формулу суммы углов выпуклого многоугольника.

Решение задач

1. Работа в рабочих тетрадях. (Один из учащихся вслух читает задачу и ее решение, заполняя пропуски, остальные внимательно следят за его работой. Если ученик допускает при этом ошибку, то класс исправляет ее.)

Задача №4. Используя формулу (n -2)·180°, найдите сумму углов выпуклого:

а) одиннадцатиугольника

б) двадцатидвухугольника

Ответ: а) 1620°, б) 3600°

2. Решить письменно №365 (в). Сколько сторон имеет выпуклый многоугольник, каждый угол которого равен 120°.

Один из учащихся вызывается к доске для решения задачи, остальные работают в тетрадях.

Решение: сумму углов выпуклого n -угольника равна 180° ٠ ( n -2). Следовательно, 180° ٠ ( n -2)=120° ٠ n

Отсюда: 180° ٠ n -360°=120° ٠ n , 60° ٠ n =360°, n =6.

Ответ: 6 сторон.

Наводящие вопросы:

Чему равна сумма углов выпуклого n -угольника?

Как другим способом можно вычислить сумму углов выпуклого n -угольника, если каждый из его n углов равен 120°?

Как найти число сторон такого многоугольника?

VI . Самостоятельная работа

Цель: проверить уровень усвоения темы

Задание 1.

Используя формулу, найдите сумму углов выпуклого n угольника

1 вариант 2 вариант

n =12. Ответ: 1800° n =32. Ответ: 5400 °

Задание 2.

Сколько сторон имеет выпуклый многоугольник, каждый угол которого равен:

1 вариант 2 вариант

90°. Ответ: Четыре 60° Ответ: Три

Несколько учащихся от каждого варианта записывают свои ответы на обороте доски, учитель проверяет, остальные учащиеся осуществляют само- или взаимопроверку по выбору.

Домашнее задание:

Цель: Закрепить умения и навыки учащихся решать задачи с применением формулы суммы углов выпуклого многоугольника.

1. Пункт 40 на стр. 99, вопрос 3 на стр. 114;

2. Решить задачи №364 (в), 365 (г).

VII . Итог урока:

1. Составление синквейна.

2. Выставление оценок (среднее арифметическое: диктант, л/р, с/р).

3. Комментирование домашнего задания.

4. Сдача тетрадей учениками.

Синквейн

Многоугльники

Выпуклые, n -угольные

Строим, разбиваем, вычисляем

Сумма углов выпуклого n -угольника равна (n -2)·180°

Формула

Пусть - данный выпуклый многоугольник и n > 3. Тогда проведем из одной вершины к противоположным вершинам n-3 диагонали: . Так как многоугольник выпуклый, то эти диагонали разбивают его на n - 2 треугольника: . Сумма углов многоугольника совпадает с суммой углов всех этих треугольников. Сумма углов в каждом треугольнике равна 180°, а число этих треугольников есть n-2. Следовательно, сумма углов n-угольника равна 180°(n-2). Теорема доказана.

Замечание

Для невыпуклого n-угольника сумма углов также равна 180°(n-2). Доказательство аналогично, но использует в дополнение лемму о том, что любой многоугольник может быть разрезан диагоналями на треугольники.

Примечания

Теорема о сумме углов многоугольника для многоугольников на сфере не выполняется (а также на любой другой искажённой плоскости, кроме некоторых случаев). Подробнее смотрите неевклидовы геометрии .

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Теорема о сумме углов многоугольника" в других словарях:

    Треугольник Теорема о сумме углов треугольника классическая теорема евклидовой геометрии. Утверждает, что … Википедия

    - … Википедия

    Утверждает, что любые два равновеликих многоугольника равносоставлены. Более формально: Пусть P и Q суть два многоугольника с одинаковой площадью. Тогда их можно разрезать соответственно на многоугольники и, так что для любого … Википедия

    Теорема Бойяи Гервина утверждает, что любые два равновеликих многоугольника равносоставлены. Более формально: Пусть и суть два многоугольника с одинаковой площадью. Тогда их можно разрезать соответственно на многоугольники и, так что для… … Википедия

    - … Википедия

    У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия

Треугольник, квадрат, шестиугольник - эти фигуры известны практически всем. Но вот о том, что такое правильный многоугольник, знает далеко не каждый. А ведь это все те же Правильным многоугольником называют тот, что имеет равные между собой углы и стороны. Таких фигур очень много, но все они имеют одинаковые свойства, и к ним применимы одни и те же формулы.

Свойства правильных многоугольников

Любой правильный многоугольник, будь то квадрат или октагон, может быть вписан в окружность. Это основное свойство часто используется при построении фигуры. Кроме того, окружность можно и вписать в многоугольник. При этом количество точек соприкосновения будет равняться количеству его сторон. Немаловажно, что окружность, вписанная в правильный многоугольник, будет иметь с ним общий центр. Эти геометрические фигуры подчинены одним теоремам. Любая сторона правильного n-угольника связана с радиусом описанной около него окружности R. Поэтому ее можно вычислить, используя следующую формулу: а = 2R ∙ sin180°. Через можно найти не только стороны, но и периметр многоугольника.

Как найти число сторон правильного многоугольника

Любой состоит из некоторого числа равных друг другу отрезков, которые, соединяясь, образуют замкнутую линию. При этом все углы образовавшейся фигуры имеют одинаковое значение. Многоугольники делятся на простые и сложные. К первой группе относятся треугольник и квадрат. Сложные многоугольники имеют большее число сторон. К ним также относят звездчатые фигуры. У сложных правильных многоугольников стороны находят путем вписывания их в окружность. Приведем доказательство. Начертите правильный многоугольник с произвольным числом сторон n. Опишите вокруг него окружность. Задайте радиус R. Теперь представьте, что дан некоторый n-угольник. Если точки его углов лежат на окружности и равны друг другу, то стороны можно найти по формуле: a = 2R ∙ sinα: 2.

Нахождение числа сторон вписанного правильного треугольника

Равносторонний треугольник - это правильный многоугольник. Формулы к нему применяются те же, что и к квадрату, и n-угольнику. Треугольник будет считаться правильным, если у него одинаковые по длине стороны. При этом углы равны 60⁰. Построим треугольник с заданной длиной сторон а. Зная его медиану и высоту, можно найти значение его сторон. Для этого будем использовать способ нахождения через формулу а = х: cosα, где х - медиана или высота. Так как все стороны треугольника равны, то получаем а = в = с. Тогда верным будет следующее утверждение а = в = с = х: cosα. Аналогично можно найти значение сторон в равнобедренном треугольнике, но х будет заданная высота. При этом проецироваться она должна строго на основание фигуры. Итак, зная высоту х, найдем сторону а равнобедренного треугольника по формуле а = в = х: cosα. После нахождения значения а можно вычислить длину основания с. Применим теорему Пифагора. Будем искать значение половины основания c: 2=√(х: cosα)^2 - (х^2) = √x^2 (1 - cos^2α) : cos^2α = x ∙ tgα. Тогда c = 2xtgα. Вот таким несложным способом можно найти число сторон любого вписанного многоугольника.

Вычисление сторон квадрата, вписанного в окружность

Как и любой другой вписанный правильный многоугольник, квадрат имеет равные стороны и углы. К нему применяются те же формулы, что и к треугольнику. Вычислить стороны квадрата можно через значение диагонали. Рассмотрим этот способ более детально. Известно, что диагональ делит угол пополам. Изначально его значение было 90 градусов. Таким образом, после деления образуются два Их углы при основании будут равны 45 градусов. Соответственно каждая сторона квадрата будет равна, то есть: а = в = с = д = е ∙ cosα = е√2: 2, где е - это диагональ квадрата, или основание образовавшегося после деления прямоугольного треугольника. Это не единственный способ нахождения сторон квадрата. Впишем эту фигуру в окружность. Зная радиус этой окружности R, найдем сторону квадрата. Будем вычислять ее следующим образом a4 = R√2. Радиусы правильных многоугольников вычисляют по формуле R = а: 2tg (360 o: 2n), где а - длина стороны.

Как вычислить периметр n-угольника

Периметром n-угольника называют сумму всех его сторон. Вычислить его несложно. Для этого необходимо знать значения всех сторон. Для некоторых видов многоугольников существуют специальные формулы. Они позволяют найти периметр намного быстрее. Известно, что любой правильный многоугольник имеет равные стороны. Поэтому для того, чтобы вычислить его периметр, достаточно знать хотя бы одну из них. Формула будет зависеть от количества сторон фигуры. В общем, она выглядит так: Р = an, где а - значение стороны, а n - количество углов. Например, чтобы найти периметр правильного восьмиугольника со стороной 3 см, необходимо умножить ее на 8, то есть Р = 3 ∙ 8 = 24 см. Для шестиугольника со стороной 5 см вычисляем так: Р = 5 ∙ 6 = 30 см. И так для каждого многоугольника.

Нахождение периметра параллелограмма, квадрата и ромба

В зависимости от того, сколько сторон имеет правильный многоугольник, вычисляется его периметр. Это намного облегчает поставленную задачу. Ведь в отличие от прочих фигур, в этом случае не нужно искать все его стороны, достаточно одной. По этому же принципу находим периметр у четырехугольников, то есть у квадрата и ромба. Несмотря на то что это разные фигуры, формула для них одна Р = 4а, где а - сторона. Приведем пример. Если сторона ромба или квадрата равна 6 см, то находим периметр следующим образом: Р = 4 ∙ 6 = 24 см. У параллелограмма равны только противоположные стороны. Поэтому его периметр находят, используя другой способ. Итак, нам необходимо знать длину а и ширину в фигуры. Затем применяем формулу Р = (а + в) ∙ 2. Параллелограмм, у которого равны все стороны и углы между ними, называется ромб.

Нахождение периметра равностороннего и прямоугольного треугольника

Периметр правильного можно найти по формуле Р = 3а, где а - длина стороны. Если она неизвестна, ее можно найти через медиану. В прямоугольном треугольнике равное значение имеют только две стороны. Основание можно найти через теорему Пифагора. После того как станут известны значения всех трех сторон, вычисляем периметр. Его можно найти, применяя формулу Р = а + в + с, где а и в - равные стороны, а с - основание. Напомним, что в равнобедренном треугольнике а = в = а, значит, а + в = 2а, тогда Р = 2а + с. Например, сторона равнобедренного треугольника равна 4 см, найдем его основание и периметр. Вычисляем значение гипотенузы по теореме Пифагора с = √а 2 + в 2 = √16+16 = √32 = 5,65 см. Вычислим теперь периметр Р = 2 ∙ 4 + 5,65 = 13,65 см.

Как найти углы правильного многоугольника

Правильный многоугольник встречается в нашей жизни каждый день, например, обычный квадрат, треугольник, восьмиугольник. Казалось бы, нет ничего проще, чем построить эту фигуру самостоятельно. Но это просто только на первый взгляд. Для того чтобы построить любой n-угольник, необходимо знать значение его углов. Но как же их найти? Еще ученые древности пытались построить правильные многоугольники. Они догадались вписать их в окружности. А потом на ней отмечали необходимые точки, соединяли их прямыми линиями. Для простых фигур проблема построения была решена. Формулы и теоремы были получены. Например, Эвклид в своем знаменитом труде «Начало» занимался решением задач для 3-, 4-, 5-, 6- и 15-угольников. Он нашел способы их построения и нахождения углов. Рассмотрим, как это сделать для 15-угольника. Сначала необходимо рассчитать сумму его внутренних углов. Необходимо использовать формулу S = 180⁰(n-2). Итак, нам дан 15-угольник, значит, число n равно 15. Подставляем известные нам данные в формулу и получаем S = 180⁰(15 - 2) = 180⁰ х 13 = 2340⁰. Мы нашли сумму всех внутренних углов 15-угольника. Теперь необходимо получить значение каждого из них. Всего углов 15. Делаем вычисление 2340⁰: 15 = 156⁰. Значит, каждый внутренний угол равен 156⁰, теперь при помощи линейки и циркуля можно построить правильный 15-угольник. Но как быть с более сложными n-угольниками? Много веков ученые бились над решением этой проблемы. Оно было найдено только лишь в 18-м веке Карлом Фридрихом Гауссом. Он смог построить 65537-угольник. С этих пор проблема официально считается полностью решенной.

Расчет углов n-угольников в радианах

Конечно, есть несколько способов нахождения углов многоугольников. Чаще всего их вычисляют в градусах. Но можно выразить их и в радианах. Как это сделать? Необходимо действовать следующим образом. Сначала выясняем число сторон правильного многоугольника, затем вычитаем из него 2. Значит, мы получаем значение: n - 2. Умножьте найденную разность на число п («пи» = 3,14). Теперь остается только разделить полученное произведение на число углов в n-угольнике. Рассмотрим данные вычисления на примере все того же пятнадцатиугольника. Итак, число n равно 15. Применим формулу S = п(n - 2) : n = 3,14(15 - 2) : 15 = 3,14 ∙ 13: 15 = 2,72. Это, конечно же, не единственный способ рассчитать угол в радианах. Можно просто разделить размер угла в градусах на число 57,3. Ведь именно столько градусов эквивалентно одному радиану.

Расчет значения углов в градах

Помимо градусов и радиан, значение углов правильного многоугольника можно попробовать найти в градах. Делается это следующим образом. Из общего количества углов вычитаем 2, делим полученную разность на число сторон правильного многоугольника. Найденный результат умножаем на 200. К слову сказать, такая единица измерения углов, как грады, практически не используется.

Расчет внешних углов n-угольников

У любого правильного многоугольника, кроме внутреннего, можно вычислить еще и внешний угол. Его значение находят так же, как и для остальных фигур. Итак, чтобы найти внешний угол правильного многоугольника, необходимо знать значение внутреннего. Далее, нам известно, что сумма этих двух углов всегда равна 180 градусам. Поэтому вычисления делаем следующим образом: 180⁰ минус значение внутреннего угла. Находим разность. Она и будет равняться значению смежного с ним угла. Например, внутренний угол квадрата равен 90 градусов, значит, внешний будет составлять 180⁰ - 90⁰ = 90⁰. Как мы видим, найти его несложно. Внешний угол может принимать значение от +180⁰ до, соответственно, -180⁰.

Данные геометрические фигуры окружают нас повсюду. Выпуклые многоугольники бывают природными, например, пчелиные соты или искусственными (созданными человеком). Эти фигуры используются в производстве различных видов покрытий, в живописи, архитектуре, украшениях и т.д. Выпуклые многоугольники обладают тем свойством, что все их точки располагаются по одну сторону от прямой, что проходит через пару соседних вершин этой геометрической фигуры. Существуют и другие определения. Выпуклым называется тот многоугольник, который расположен в единой полуплоскости относительно любой прямой, содержащей одну из его сторон.

В курсе элементарной геометрии всегда рассматриваются исключительно простые многоугольники. Чтобы понять все свойства таких необходимо разобраться с их природой. Для начала следует уяснить, что замкнутой называется любая линия, концы которой совпадают. Причем фигура, образованная ею, может иметь самые разные конфигурации. Многоугольником называют простую замкнутую ломаную линию, у которой соседние звенья не располагаются на одной прямой. Ее звенья и вершины являются, соответственно, сторонами и вершинами этой геометрической фигуры. Простая ломаная не должна иметь самопересечений.

Вершины многоугольника называют соседними, в том случае если они представляют собой концы одной из его сторон. Геометрическая фигура, у которой имеется n-е число вершин, а значит, и n-е количество сторон, называется n-угольником. Саму ломаную линию называют границей или контуром этой геометрической фигуры. Многоугольной плоскостью или плоским многоугольником называют конечную часть любой плоскости, им ограниченной. Соседними сторонами этой геометрической фигуры называют отрезки ломаной линии, исходящие из одной вершины. Они будут не соседними, если исходят их разных вершин многоугольника.

Другие определения выпуклых многоугольников

В элементарной геометрии существует еще несколько эквивалентных по своему значению определений, указывающих на то, какой многоугольник называется выпуклым. Причем все эти формулировки в одинаковой степени верны. Выпуклым считается тот многоугольник, у которого:

Каждый отрезок, что соединяет две любые точки внутри него, полностью лежит в нем;

Внутри него лежат все его диагонали;

Любой внутренний угол не превышает 180°.

Многоугольник всегда разбивает плоскость на 2 части. Одна из них - ограниченная (она может быть заключена в круг), а другая - неограниченная. Первую называют внутренней областью, а вторую - внешней областью этой геометрической фигуры. Данный многоугольник является пересечением (иными словами - общей составляющей) нескольких полуплоскостей. При этом каждый отрезок, имеющий концы в точках, которые принадлежат многоугольнику, полностью принадлежит ему.

Разновидности выпуклых многоугольников

Определение выпуклого многоугольника не указывает на то, что их существует множество видов. Причем у каждого из них имеются определенные критерии. Так, выпуклые многоугольники, у которых есть внутренний угол равный 180°, называются слабовыпуклыми. Выпуклая геометрическая фигура, что имеет три вершины, называется треугольником, четыре - четырехугольником, пять - пятиугольником и т. д. Каждый из выпуклых n-угольников отвечает следующему важнейшему требованию: n должно равняться или быть больше 3. Каждый из треугольников является выпуклым. Геометрическая фигура данного типа, у которой все вершины располагаются на одной окружности, называется вписанной в окружность. Выпуклый многоугольник называют описанным, если все его стороны около окружности прикасаются к ней. Два многоугольника называют равными только в том случае, когда при помощи наложения их можно совместить. Плоским многоугольником называют многоугольную плоскость (часть плоскости), что ограничена этой геометрической фигурой.

Правильные выпуклые многоугольники

Правильными многоугольниками называют геометрические фигуры с равными углами и сторонами. Внутри них имеется точка 0, которая находится на одинаковом расстоянии от каждой из его вершин. Ее называют центром этой геометрической фигуры. Отрезки, соединяющие центр с вершинами этой геометрической фигуры называют апофемами, а те, что соединяют точку 0 со сторонами - радиусами.

Правильный четырехугольник - квадрат. Правильный треугольник называют равносторонним. Для таких фигур существует следующее правило: каждый угол выпуклого многоугольника равен 180° * (n-2)/ n,

где n - число вершин этой выпуклой геометрической фигуры.

Площадь любого правильного многоугольника определяют по формуле:

где p равно половине суммы всех сторон данного многоугольника, а h равно длине апофемы.

Свойства выпуклых многоугольников

Выпуклые многоугольники имеют определенные свойства. Так, отрезок, который соединяет любые 2 точки такой геометрической фигуры, обязательно располагается в ней. Доказательство:

Предположим, что Р - данный выпуклый многоугольник. Берем 2 произвольные точки, например, А, В, которые принадлежат Р. По существующему определению выпуклого многоугольника эти точки расположены в одной стороне от прямой, что содержит любую сторону Р. Следовательно, АВ также имеет это свойство и содержится в Р. Выпуклый многоугольник всегда возможно разбить на несколько треугольников абсолютно всеми диагоналями, которые проведены из одной его вершины.

Углы выпуклых геометрических фигур

Углы выпуклого многоугольника - это углы, что образованы его сторонами. Внутренние углы находятся во внутренней области данной геометрической фигуры. Угол, что образован его сторонами, которые сходятся в одной вершине, называют углом выпуклого многоугольника. с внутренними углами данной геометрической фигуры, называют внешними. Каждый угол выпуклого многоугольника, расположенный внутри него, равен:

где х - величина внешнего угла. Эта простая формула действует в отношении любых геометрических фигур такого типа.

В общем случае, для внешних углов существует следующие правило: каждый угол выпуклого многоугольника равен разности между 180° и величиной внутреннего угла. Он может иметь значения в пределах от -180° до 180°. Следовательно, когда внутренний угол составляет 120°, внешний будет иметь величину в 60°.

Сумма углов выпуклых многоугольников

Сумма внутренних углов выпуклого многоугольника устанавливается по формуле:

где n - число вершин n-угольника.

Сумма углов выпуклого многоугольника вычисляется довольно просто. Рассмотрим любую такую геометрическую фигуру. Для определения суммы углов внутри выпуклого многоугольника необходимо соединить одну из его вершин с другими вершинами. В результате такого действия получается (n-2) треугольника. Известно, что сумма углов любых треугольников всегда равна 180°. Поскольку их количество в любом многоугольнике равняется (n-2), сумма внутренних углов такой фигуры равняется 180° х (n-2).

Сумма углов выпуклого многоугольника, а именно любых двух внутренних и смежных с ними внешних углов, у данной выпуклой геометрической фигуры всегда будет равна 180°. Исходя из этого, можно определить сумму всех ее углов:

Сумма внутренних углов составляет 180° * (n-2). Исходя из этого, сумму всех внешних углов данной фигуры устанавливают по формуле:

180° * n-180°-(n-2)= 360°.

Сумма внешних углов любого выпуклого многоугольника всегда будет равна 360° (независимо от количества его сторон).

Внешний угол выпуклого многоугольника в общем случае представляется разностью между 180° и величиной внутреннего угла.

Другие свойства выпуклого многоугольника

Помимо основных свойств данных геометрических фигур, у них есть и другие, которые возникают при манипуляциях с ними. Так, любой из многоугольников может быть разделен на несколько выпуклых n-угольников. Для этого необходимо продолжить каждую из его сторон и разрезать эту геометрическую фигуру вдоль этих прямых линий. Разбить любой многоугольник на несколько выпуклых частей можно и таким образом, чтобы вершины каждого из кусков совпадали со всеми его вершинами. Из такой геометрической фигуры можно очень просто сделать треугольники путем проведения всех диагоналей из одной вершины. Таким образом, любой многоугольник, в конечном счете, можно разбить на определенное количество треугольников, что оказывается весьма полезным при решении различных задач, связанных с такими геометрическими фигурами.

Периметр выпуклого многоугольника

Отрезки ломаной линии, называемые сторонами многоугольника, чаще всего обозначаются следующими буквами: ab, bc, cd, de, ea. Это стороны геометрической фигуры с вершинами a, b, c, d, e. Сумма длины всех сторон этого выпуклого многоугольника называют его периметром.

Окружность многоугольника

Выпуклые многоугольники могут быть вписанными и описанными. Окружность, касающаяся всех сторон этой геометрической фигуры, называется вписанной в нее. Такой многоугольник называют описанным. Центр окружности, которая вписана в многоугольник, представляет собой точку пересечения биссектрис всех углов внутри данной геометрической фигуры. Площадь такого многоугольника равняется:

где r - радиус вписанной окружности, а p - полупериметр данного многоугольника.

Окружность, содержащую вершины многоугольника, называют описанной около него. При этом данная выпуклая геометрическая фигура называется вписанной. Центр окружности, которая описана около такого многоугольника, представляет собой точку пересечения так называемых серединных перпендикуляров всех сторон.

Диагонали выпуклых геометрических фигур

Диагонали выпуклого многоугольника - это отрезки, которые соединяют не соседние вершины. Каждая из них лежит внутри этой геометрической фигуры. Число диагоналей такого n-угольника устанавливается по формуле:

N = n (n - 3)/ 2.

Число диагоналей выпуклого многоугольника играет важную роль в элементарной геометрии. Число треугольников (К), на которые возможно разбить каждый выпуклый многоугольник, вычисляется по следующей формуле:

Количество диагоналей выпуклого многоугольника всегда зависит от числа его вершин.

Разбиение выпуклого многоугольника

В некоторых случаях для решения геометрических задач необходимо разбить выпуклый многоугольник на несколько треугольников с непересекающимися диагоналями. Эту проблему можно решить путем выведения определенной формулы.

Определение задачи: назовем правильным некое разбиение выпуклого n-угольника на несколько треугольников диагоналями, пересекающимися только в вершинах этой геометрической фигуры.

Решение: Предположим, что Р1, Р2 , Р3 … , Pn - вершины этого n-угольника. Число Xn - количество его разбиений. Внимательно рассмотрим полученную диагональ геометрической фигуры Pi Pn. В любом из правильных разбиений Р1 Pn принадлежит определенному треугольнику Р1 Pi Pn, у которого 1

Пусть і = 2 будет одной группой правильных разбиений, всегда содержащей диагональ Р2 Pn. Количество разбиений, которые входят в нее, совпадает с числом разбиений (n-1)-угольника Р2 Р3 Р4… Pn. Иными словами, оно равняется Xn-1.

Если і = 3, то эта другая группа разбиений будет всегда содержать диагонали Р3 Р1 и Р3 Pn. При этом количество правильных разбиений, что содержатся в данной группе, будет совпадать с числом разбиений (n-2)-угольника Р3 Р4… Pn. Другими словами, оно будет равняться Xn-2.

Пусть і = 4, тогда среди треугольников правильное разбиение непременно будет содержать треугольник Р1 Р4 Pn, к которому будет примыкать четырехугольник Р1 Р2 Р3 Р4, (n-3)-угольник Р4 Р5… Pn. Количество правильных разбиений такого четырехугольника равняется Х4, а число разбиений (n-3)-угольника равняется Xn-3. Исходя из всего изложенного, можно сказать, что полное количество правильных разбиений, которые содержатся в данной группе, равняется Xn-3 Х4. Другие группы, у которых і = 4, 5, 6, 7… будут содержать Xn-4 Х5, Xn-5 Х6, Xn-6 Х7 … правильных разбиений.

Пусть і = n-2, то количество правильных разбиений в данной группе будет совпадать с числом разбиений в группе, у которой i=2 (другими словами, равняется Xn-1).

Так как Х1 = Х2 = 0, Х3=1, Х4=2…, то число всех разбиений выпуклого многоугольника равно:

Xn = Xn-1 + Xn-2 + Xn-3 Х4 + Xn-4 Х5 + … + Х 5 Xn-4 + Х4 Xn-3 + Xn-2 + Xn-1.

Х5 = Х4 + Х3 + Х4 = 5

Х6 = Х5 + Х4 + Х4 + Х5 = 14

Х7 = Х6 + Х5 + Х4 * Х4 + Х5 + Х6 = 42

Х8 = Х7 + Х6 + Х5 * Х4 + Х4 * Х5 + Х6 + Х7 = 132

Количество правильных разбиений, пересекающих внутри одну диагональ

При проверке частных случаев, можно прийти к предположению, что число диагоналей выпуклых n-угольников равняется произведению всех разбиений этой фигуры на (n-3).

Доказательство данного предположения: представим, что P1n = Xn * (n-3), тогда любой n-угольник возможно разбить на (n-2)-треугольников. При этом из них может быть сложен (n-3)-четырехугольник. Наряду с этим, у каждого четырехугольника будет диагональ. Поскольку в этой выпуклой геометрической фигуре могут быть проведены две диагонали, это значит, что и в любых (n-3)-четырехугольниках возможно провести дополнительные диагонали (n-3). Исходя из этого, можно сделать вывод, что в любом правильном разбиении имеется возможность провести (n-3)-диагонали, отвечающие условиям этой задачи.

Площадь выпуклых многоугольников

Нередко при решении различных задач элементарной геометрии появляется необходимость определить площадь выпуклого многоугольника. Предположим, что (Xi. Yi), i = 1,2,3… n представляет собой последовательность координат всех соседних вершин многоугольника, не имеющего самопересечений. В этом случае его площадь вычисляется по такой формуле:

S = ½ (∑ (X i + X i + 1) (Y i + Y i + 1)),

где (Х 1 , Y 1) = (X n +1 , Y n + 1).