Азотная кислота hno3. Азотистая кислота

: моногидрат (HNO 3 ·H 2 O) и тригидрат (HNO 3 ·3H 2 O).

Физические и физико-химические свойства

Фазовая диаграмма водного раствора азотной кислоты.

Азот в азотной кислоте четырёхвалентен , степень окисления +5. Азотная кислота — бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C с частичным разложением. Растворимость азотной кислоты в воде не ограничена. Водные растворы HNO 3 с массовой долей 0,95-0,98 называют «дымящей азотной кислотой», с массовой долей 0,6-0,7 — концентрированной азотной кислотой. С водой образует азеотропную смесь (массовая доля 68,4 %, d 20 = 1,41 г/см, T кип = 120,7 °C)

При кристаллизации из водных растворов азотная кислота образует кристаллогидраты:

  • моногидрат HNO 3 ·H 2 O, T пл = −37,62 °C
  • тригидрат HNO 3 ·3H 2 O, T пл = −18,47 °C

Твёрдая азотная кислота образует две кристаллические модификации:

  • моноклинная , пространственная группа P 2 1 /a, a = 1,623 нм, b = 0,857 нм, c = 0,631, β = 90°, Z = 16;

Моногидрат образует кристаллы ромбической сингонии , пространственная группа P na2, a = 0,631 нм, b = 0,869 нм, c = 0,544, Z = 4;

Плотность водных растворов азотной кислоты как функция её концентрации описывается уравнением

где d — плотность в г/см³, с — массовая доля кислоты. Данная формула плохо описывает поведение плотности при концентрации более 97 %.

Химические свойства

Высококонцентрированная HNO 3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:

При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять (без разложения) только при пониженном давлении (указанная температура кипения при атмосферном давлении найдена экстраполяцией).

в) вытесняет слабые кислоты из их солей:

При кипении или под действием света азотная кислота частично разлагается:

Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. Как кислота-окислитель, HNO 3 взаимодействует:

Нитраты

Азотная кислота является сильной кислотой. Её соли — нитраты — получают действием HNO 3 на металлы, оксиды , гидроксиды или карбонаты . Все нитраты хорошо растворимы в воде. Нитрат-ион в воде не гидролизуется.

Соли азотной кислоты при нагревании необратимо разлагаются, причём состав продуктов разложения определяется катионом:

а) нитраты металлов, стоящих в ряду напряжений левее магния:

б) нитраты металлов, расположенных в ряду напряжений между магнием и медью :

в) нитраты металлов, расположенных в ряду напряжений правее :

Нитраты в водных растворах практически не проявляют окислительных свойств, но при высокой температуре в твердом состоянии являются сильными окислителями, например, при сплавлении твердых веществ:

Исторические сведения

Методика получения разбавленной азотной кислоты путём сухой перегонки селитры с квасцами и медным купоросом была, по видимому, впервые описана трактатах Джабира (Гебера в латинизированных переводах) в VIII веке . Этот метод с теми или иными модификациями, наиболее существенной из которых была замена медного купороса железным , применялся в европейской и арабской алхимии вплоть до XVII века .

В XVII веке Глаубер предложил метод получения летучих кислот реакцией их солей с концентрированной серной кислотой, в том числе и азотной кислоты из калийной селитры , что позволило ввести в химическую практику концентрированную азотную кислоту и изучить её свойства. Метод

Азотная кислота – бесцветная, «дымящаяся» на воздухе жидкость с едким запахом. Химическая формула HNO3.

Физические свойства. При температуре 42 °C застывает в виде белых кристаллов. Безводная азотная кислота закипает при атмосферном давлении и 86 °C. С водой смешивается в произвольных соотношениях.

Под воздействием света концентрированная HNO3 разлагается на оксиды азота:

HNO3 хранят в прохладном и темном месте. Валентность азота в ней – 4, степень окисления – +5, координационное число – 3.

HNO3 – сильная кислота. В растворах полностью распадается на ионы. Взаимодействует с основными оксидами и основаниями, с солями более слабых кислот. HNO3 обладает сильной окислительной способностью. Способна восстанавливаться с одновременным образованием нитрата до соединений, в зависимости от концентрации, активности взаимодействующего металла и условий:

1) концентрированная HN03 , взаимодействуя с малоактивными металлами, восстанавливается до оксида азота (IV) NO2:

2) если кислота разбавленная, то она восстанавливается до оксида азота (II) NO:

3) более активные металлы восстанавливают разбавленную кислоту до оксида азота (I) N2O:

До солей аммония восстанавливается очень разбавленная кислота:

Au, Pt, Rh, Ir, Ta, Ti не реагируют с концентрированной HNO3, а Al, Fe, Co и Cr – «пассивируются».

4) с неметаллами HNO3 реагирует, восстанавливая их до соответствующих кислот, а сама восстанавливается до оксидов:

5) HNO3 окисляет некоторые катионы и анионы и неорганические ковалентные соединения.

6) вступает во взаимодействие со многими органическими соединениями – реакция нитрования.

Промышленное получение азотной кислоты: 4NH3 + 5O2 = 4NO + 6H2O.

Аммиак – NO переходит в NO2, который с водой в присутствии кислорода воздуха дает азотную кислоту.

Катализатор – платиновые сплавы. Получаемая HNO3 не более 60 %. При необходимости ее концентрируют. Промышленностью выпускается разбавленная HNO3 (47–45 %), а концентрированная HNO3 (98–97 %). Концентрированную кислоту перевозят в алюминиевых цистернах, разбавленную – в цистернах из кислотоупорной стали.

34. Фосфор

Фосфор (Р) находится в 3-м периоде, в V группе, главной подгруппы периодической системы Д.И. Менделеева. Порядковый номер 15, заряд ядра +15, Аr = 30,9738 а.е. м... имеет 3 энергетических уровня, на энергетической оболочке 15 электронов, из них 5 валентных. У фосфора появляется d-подуровень. Электронная конфигурация Р: 1s2 2s2 2p63s2 3p33d0. Характерна sp3-гибридизация, реже sp3d1. Валентность фосфора – III, V. Наиболее характерная степень окисления +5 и -3, менее характерные: +4, +1, -2, -3. Фосфор может проявлять и окислительные и восстановительные свойства: принимать и отдавать электроны.

Строение молекулы: способность образования?-связи менее выражена, чем у азота – при обычной температуре в газовой фазе фосфор представлен в виде молекул Р4, имеющих форму равносторонних пирамид с углами по 60°. Связи между атомами ковалентные, неполярные. Каждый атом Р в молекуле связан стремя другими атомами?-связями.

Физические свойства : фосфор образует три аллотропных модификации: белый, красный и черный. Каждая модификация имеет свою температуру плавления и замерзания.

Химические свойства:

1) при нагревании Р4 обратимо диссоциирует:

2) свыше 2000 °C Р2 распадается на атомы:

3) фосфор образует соединения с неметаллами:

Непосредственно соединяется со всеми галогенами: 2Р + 5Cl2 = 2РCl5.

При взаимодействии с металлами фосфор образует фосфиды:

Соединяясь с водородом, образует газ фос-фин: Р4 + 6Н2 = 4РН3?.

При взаимодействии с кислородом образует ангидрид Р2О5: Р4 + 5О2 = 2Р2О5.

Получение: фосфор получают прокаливанием смеси Са3(Р O4)2 с песком и коксом в электропечи при температуре 1500 °C без доступа воздуха: 2Са3(РO4)2 + 1 °C + 6SiO2 = 6СаSiO3 + 1 °CO + P4?.

В природе фосфор в чистом виде не встречается, а образуется в результате химической активности. Основными природными соединениями фосфора являются минералы: Са3(РO4)2 – фосфорит; Са3(РO4)2?СаF2 (или СаCl) или Са3(РO4)2?Са(ОН)2 – апатит. Велико биологическое значение фосфора. Фосфор входит в состав некоторых растительных и животных белков: белок молока, крови, мозговой и нервной ткани. Большое его количество содержится в костях позвоночных животных в виде соединений: 3Са3(РO4)2?Са(ОН)2 и 3Са3(РO4)2?СаСО3?Н2О. Фосфор является обязательным компонентом нуклеиновых кислот, играя роль в передачи наследственной информации. Фосфор содержится в зубной эмали, в тканях в форме лецитина – соединения жиров с фосфорноглицериновыми эфирами.

Азотистая и азотная кислоты и их соли

Азотистая кислота существует либо в растворе, либо в газовой фазе. Она неустойчива и при нагревании распадается в парах:

2HNO 2 «NO+NO 2 +Н 2 О

Водные растворы этой кислоты при нагревании разлагаются:

3HNO 2 «HNO 3 +H 2 O+2NO

Эта реакция обратимая, поэтому, хотя растворение NO 2 и со­провождается образованием двух кислот: 2NO 2 + Н 2 O=HNO 2 +HNO 3

практически взаимодействием NO 2 с водой получают HNO 3:

3NO 2 +H 2 O=2HNO 3 +NO

По кислотным свойствам азотистая кислота лишь немного сильнее уксусной. Соли ее называются нитритами и в отличие от самой кислоты являются устойчивыми. Из растворов ее солей можно добавлением серной кислоты получить раствор HNO 2:

Ba(NO 2) 2 +H 2 SO 4 =2HNO 2 +BaSO 4 ¯

На основе данных о ее соединениях предполагают два типа структуры азотистой кислоты:

которым соответствуют нитриты и нитросоединения. Нитриты активных металлов имеют структуру I типа, а малоактивных ме­таллов - II типа. Почти все соли этой кислоты хорошо раствори­мы, но нитрит серебра труднее всех. Все соли азотистой кислоты ядовиты. Для химической технологии важны KNO 2 и NaNO 2 , которые необходимы для производства органических красите­лей. Обе соли получают из оксидов азота:

NO+NO 2 +NaOH=2NaNO 2 +Н 2 О или при нагревании их нитратов:

KNO 3 +Pb=KNO 2 +PbO

Pb необходим для связывания выделяющегося кислорода.

Из химических свойств HNO 2 сильнее выражены окислитель­ные, при этом сама она восстанавливается до NO:

Однако можно привести много примеров таких реакций, где азотистая кислота проявляет восстановительные свойства:

Определить присутствие азотистой кислоты и ее солей в рас­творе можно, если прибавить раствор иодида калия и крахмала. Нитрит-ион окисляет анион иода. Эта реакция требует присутст­вия Н + , т.е. протекает в кислой среде.

Азотная кислота

В лабораторных условиях азотную кислоту можно получить действием концентрированной серной кислоты на нитраты:

NaNO 3 +H 2 SO 4(к) =NaHSO 4 +HNO 3 Реакция протекает при слабом нагревании.

Получение азотной кислоты в промышленных масштабах осуществляется каталитическим окислением аммиака кислоро­дом воздуха:

1. Вначале смесь аммиака с воздухом пропускают над платино­вым катализатором при 800°С. Аммиак окисляется до оксида азота (II):

4NH 3 + 5O 2 =4NO+6Н 2 О

2 . При охлаждении происходит дальнейшее окисление NO до NO 2: 2NO+O 2 =2NO 2

3. Образующийся оксид азота (IV) растворяется в воде в присутст­вии избытка О 2 с образованием HNO 3: 4NO 2 +2Н 2 O+O 2 =4HNO 3

Исходные продукты - аммиак и воздух - тщательно очища­ют от вредных примесей, отравляющих катализатор (сероводо­род, пыль, масла и т.п.).

Образующаяся кислота является разбавленной (40-60% -ной). Концентрированную азотную кислоту (96-98% -ную) получают перегонкой разбавленной кислоты в смеси с концентрированной серной кислотой. При этом испаряется только азотная кислота.

Физические свойства

Азотная кислота - бесцветная жидкость, с едким запахом. Очень гигроскопична, «дымит» на воздухе, т.к. ее пары с влагой воздуха образуют капли тумана. Смешивается с водой в любых соотношениях. При -41,6°С переходит в кристаллическое состо­яние. Кипит при 82,6°С.

В HNO 3 валентность азота равна 4, степень окисления +5. Структурную формулу азотной кислоты изображают так:

Оба атома кислорода, связанные только с азотом, равноцен­ны: они находятся на одинаковом расстоянии от атома азота и несут каждый по половинному заряду электрона, т.е. четвертая часть азота разделена поровну между двумя атомами кислорода.

Электронную структуру азотной кислоты можно вывести так:

1. Атом водорода связывается с атомом кислорода ковалентной связью:

2. За счет неспаренного электрона атом кислорода образует кова­лентную связь с атомом азота:

3. Два неспаренных электрона атома азота образуют ковалентную связь со вторым атомом кислорода:

4. Третий атом кислорода, возбуждаясь, образует свободную 2р- орбиталь путем спаривания электронов. Взаимодействие непо­деленной пары азота со свободной орбиталью третьего атома кис­лорода приводит к образованию молекулы азотной кислоты:

Химические свойства

1. Разбавленная азотная кислота проявляет все свойства кислот. Она относится к сильным кислотам. В водных растворах диссо­циирует:

HNO 3 «Н + +NO - 3 Под действием теплоты и на свету частично разлагается:

4HNO 3 =4NO 2 +2Н 2 O+O 2 Поэтому хранят ее в прохладном и темном месте.

2. Для азотной кислоты характерны исключительно окислитель­ные свойства. Важнейшим химическим свойством является взаимодействие почти со всеми металлами. Водород при этом никогда не выделяется. Восстановление азотной кислоты зави­сит от ее концентрации и природы восстановителя. Степень окисления азота в продуктах восстановления находится в ин­тервале от +4 до -3:

HN +5 O 3 ®N +4 O 2 ®HN +3 O 2 ®N +2 O®N +1 2 O®N 0 2 ®N -3 H 4 NO 3

Продукты восстановления при взаимодействии азотной кисло­ты разной концентрации с металлами разной активности при­ведены ниже в схеме.

Концентрированная азотная кислота при обычной температу­ре не взаимодействует с алюминием, хромом, железом. Она пере­водит их в пассивное состояние. На поверхности образуется плен­ка оксидов, которая непроницаема для концентрированной кислоты.

3. Азотная кислота не реагирует с Pt, Rh, Ir, Та, Au. Платина и золото растворяются в «царской водке» - смеси 3 объемов концентрированной соляной кислоты и 1 объема концентриро­ванной азотной кислоты:

Au+НNO 3 +3НСl= AuСl 3 +NO­+2Н 2 О НСl+AuСl 3 =H

3Pt+4HNO 3 +12НСl=3PtCl 4 +4NO­+8H 2 O 2HCl+PtCl 4 =H 2

Действие «царской водки» заключается в том, что азотная кис­лота окисляет соляную до свободного хлора:

HNO 3 +HCl=Сl 2 +2Н 2 О+NOCl 2NOCl=2NO+Сl 2 Выделяющийся хлор соединяется с металлами.

4. Неметаллы окисляются азотной кислотой до соответствующих кислот, а она в зависимости от концентрации восстанавливает­ся до NO или NO 2:

S+бНNO 3(конц) =H 2 SO 4 +6NO 2 ­+2Н 2 ОР+5НNO 3(конц) =Н 3 РO 4 +5NO 2 ­+Н 2 О I 2 +10HNO 3(конц) =2HIO 3 +10NO 2 ­+4Н 2 О 3Р+5HNO 3(p азб) +2Н 2 О= 3Н 3 РО 4 +5NO­

5. Она также взаимодействует с органическими соединениями.

Соли азотной кислоты называются нитратами, представляют собой кристаллические вещества, хорошо растворимые в воде. Их получают при действии HNO 3 на металлы, их оксиды и гидрокси­ды. Нитраты калия, натрия, аммония и кальция называются се­литрами. Селитры используются главным образом как минераль­ные азотные удобрения. Кроме того, KNO 3 применяют для приготовления черного пороха (смесь 75% KNO 3 , 15% С и 10% S). Из NH 4 NO 3 , порошка алюминия и тринитротолуола изготавлива­ют взрывчатое вещество аммонал.



Соли азотной кислоты при нагревании разлагаются, причем продукты разложения зависят от положения солеобразующего металла в ряду стандартных электродных потенциалов:

Разложение при нагревании (термолиз) - важное свойство солей азотной кислоты.

2KNO 3 =2KNO 2 +O 2 ­

2Cu(NO 3) 2 =2CuO+NO 2 ­+O 2 ­

Соли металлов, расположенных в ряду левее Mg, образуют нитриты и кислород, от Mg до Cu - оксид металла, NO 2 и кисло­род, после Си - свободный металл, NO 2 и кислород.

Применение

Азотная кислота - важнейший продукт химической про­мышленности. Большие количества расходуются на приготовле­ние азотных удобрений, взрывчатых веществ, красителей, пласт­масс, искусственных волокон и др. материалов. Дымящая

азотная кислота применяется в ракетной технике в качестве окис­лителя ракетного топлива.

Азотная кислота относится к основным соединениям азота. Химическая формула – HNO 3 . Так какими же физическими и химическими свойствами обладает это вещество?

Физические свойства

Чистая азотная кислота не имеет цвета, обладает резким запахом, а на воздухе имеет особенность “дымиться”. Молярная масса составляет 63 г/моль. При температуре -42 градуса переходит в твердое агрегатное состояние и превращается в белоснежную массу. Безводная азотная кислота закипает при 86 градусах. В процессе смешивания с водой образует растворы отличные друг от друга по концентрации.

Данное вещество является одноосновной, то есть всегда имеет одну карбоксильную группу. Среди кислот, которые относятся к мощным окислителями, азотная кислота является одной из сильнейших. Она вступает в реакцию со многими металлами и неметаллами, органическими соединениями за счет восстановления азота

Нитраты – соли азотной кислоты. Чаще всего их используют в качестве удобрений в сельском хозяйстве

Химические свойства

Электронную и структурную формулу азотной кислоты изображают следующим образом:

Рис. 1. Электронная формула азотной кислоты.

Концентрированная азотная кислота подвержена воздействию света и под его действием способна разлагаться на оксиды азота. Оксиды, в свою очередь, взаимодействуя с кислотой, растворяются в ней и придают жидкости желтоватый оттенок:

4HNO 3 =4NO 2 +O 2 +2H 2 O

Хранить вещество следует в прохладном и темном месте. При повышении ее температуры и концентрации процесс распада происходит значительно быстрее. Азот в молекуле азотной кислоты всегда имеет валентность IV, степень окисления +5, координационное число 3.

Так как азотная кислота является очень сильной кислотой, в растворах она полностью разлагается на ионы. Она реагирует с основными оксидами, с основаниями, с солями более слабых и более летучих кислот.

Рис. 2. Азотная кислота.

Эта одноосновная кислота – сильнейший окислитель. Азотная кислота действует на многие металлы. В зависимости от концентрации, активности металла и условий проведения реакции может восстанавливаться с одновременным образованием соли азотной кислоты (нитрата) до соединений.

Когда азотная кислота взаимодействует с малоактивными металлами образуется NO 2:

Cu+4HNO 3 (конц.)=Сu(NO 3) 2 +2NO 2 +2H 2 O

Разбавленная азотная кислота в такой ситуации восстанавливается до NO:

3Cu+8HNO 3 (разб.)=3Сu(NO 3) 2 +2NO+4H 2 O

Если в реакцию с разбавленной азотной кислотой вступают более активные металлы, то выделяется NO 2:

4Mg+10HNO 3 (разб.)=4Mg(NO 3) 2 +N 2 O+5H 2 O

Очень разбавленная азотная кислота при взаимодействии с активными металлами восстанавливается до солей аммония:

4Zn+10HNO 3 (очень разб.)=4Zn(NO 3) 2 +NH 4 NO 3 +3H 2 O

В концентрированной азотной кислоте устойчивы Au, Pt, Rh, Ir, Ta, Ti. Металлы Al, Fe, Cr она «пассивирует» в результате образования на поверхности металлов оксидных пленок.

Смесь, образованная из одного объема концентрированной азотной и трех объемов концентрированной хлороводородной (соляной) кислоты называется «царской водкой».

Рис. 3. Царская водка.

Неметаллы окисляются азотной кислотой до соответствующих кислот, а азотная кислота в зависимости от концентрации восстанавливается до NO или NO 2:

С+4HNO 3 (конц.)=CO 2 +4NO 2 +2H 2 O

S+6HNO 3 (конц.)=H 2 SO 4 +6NO 2 +2H 2 O

Азотная кислота способна окислять некоторые катионы и анионы, а также неорганические ковалентные соединения, например, сероводород.

3H 2 S+8HNO 3 (разб.)= 3H 2 SO 4 +8NO+4H 2 O

Азотная кислота взаимодействует со многими органическими веществами, при этом один или несколько атомов водорода в молекуле органического вещества заменяются нитрогруппами – NO 2 . Этот процесс называется нитрованием.

Структурная формула

Истинная, эмпирическая, или брутто-формула: HNO 3

Химический состав Азотной кислоты

Молекулярная масса: 63,012

Азо́тная кислота́ (HNO 3 ) - сильная одноосновная кислота. Твёрдая азотная кислота образует две кристаллические модификации с моноклинной и ромбической решётками.

Азотная кислота смешивается с водой в любых соотношениях. В водных растворах она практически полностью диссоциирует на ионы. Образует с водой азеотропную смесь с концентрацией 68,4 % и t кип 120 °C при нормальном атмосферном давлении. Известны два твёрдых гидрата: моногидрат (HNO 3 ·H 2 O) и тригидрат (HNO 3 ·3H 2 O).

Азот в азотной кислоте четырёхвалентен, степень окисления +5. Азотная кислота - бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C (при нормальном атмосферном давлении) с частичным разложением. Азотная кислота смешивается с водой во всех соотношениях. Водные растворы HNO 3 с массовой долей 0,95-0,98 называют «дымящей азотной кислотой», с массовой долей 0,6-0,7 - концентрированной азотной кислотой. С водой образует азеотропную смесь (массовая доля 68,4 %, d20 = 1,41 г/см, T кип = 120,7 °C)

Высококонцентрированная HNO 3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения. ри нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять без разложения только при пониженном давлении (указанная температура кипения при атмосферном давлении найдена экстраполяцией).

Золото, некоторые металлы платиновой группы и тантал инертны к азотной кислоте во всём диапазоне концентраций, остальные металлы реагируют с ней, ход реакции при этом определяется её концентрацией.

Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +5 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты.

Смесь азотной и серной кислот носит название «меланж».

Азотная кислота широко используется для получения нитросоединений.

Смесь трех объёмов соляной кислоты и одного объёма азотной называется «царской водкой». Царская водка растворяет большинство металлов, в том числе золото и платину. Её сильные окислительные способности обусловлены образующимся атомарным хлором и хлоридом нитрозила.

Азотная кислота является сильной кислотой. Её соли - нитраты - получают действием HNO 3 на металлы, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде. Нитрат-ион в воде не гидролизуется. Нитраты - широко используются как удобрения. При этом практически все нитраты хорошо растворимы в воде, поэтому в виде минералов их в природе чрезвычайно мало; исключение составляют чилийская (натриевая) селитра и индийская селитра (нитрат калия). Большинство нитратов получают искусственно.

Азотная кислота по степени воздействия на организм относится к веществам 3-го класса опасности. Её пары очень вредны: пары вызывают раздражение дыхательных путей, а сама кислота оставляет на коже долгозаживающие язвы. При действии на кожу возникает характерное жёлтое окрашивание кожи, обусловленное ксантопротеиновой реакцией. При нагреве или под действием света кислота разлагается с образованием высокотоксичного диоксида азота NO 2 (газа бурого цвета). ПДК для азотной кислоты в воздухе рабочей зоны по NO 2 2 мг/м 3 .