Способы мониторинга лесных пожаров. Космоснимки - мониторинг природных пожаров, карта пожаров

Система оперативного мониторинга природных пожаров базируется на основе сети приемных центров российской компании СКАНЭКС , которые принимают информацию в режиме реального времени со спутников Terra, Aqua и NPP. Главная цель сервиса - доведение результатов мониторинга пожаров до широкого круга заинтересованных пользователей. Проект ориентирован как на обычную интернет-аудиторию, так и на специалистов. В качестве базовой компоненты сервиса используется технология, основанная на алгоритме автоматического детектирования пожаров по «тепловым» каналам спутниковой съемки (подробнее см. ). Область мониторинга включает в себя всю территорию России, глобальное покрытие обеспечивается данными системы FIRMS (https://earthdata.nasa.gov/firms), исходные продукты скачиваются с серверов NASA (LANCE) сразу после их публикации, постобработка производится на серверах СКАНЭКС. Основными задачами данного сервиса являются высокая оперативность донесения информации о пожарах и ее доступность. С этой целью все данные выкладываются на карту, что обеспечивает удобный просмотр и поиск информации, а также связанных тематических слоев. Дополнительная информация включает такие данные как: прогноз погоды, границы торфяников, границы выгоревших территорий, границы заповедников, лесной покров etc.
Пожалуйста, обращайтесь к нам с предложениями, комментариями и пожеланиями – мы открыты к переговорам и партнерскому сотрудничеству в целях развития проектов дистанционного мониторинга и раннего обнаружения природных пожаров. Стратегической задачей нашего проекта является дальнейшее улучшение детальности и достоверности данных, совершенствование инструментов общественного мониторинга, проводимого силами широкого круга пользователей, на основе данных спутниковой съемки и других источников наблюдений. Картографический интерфейс сервиса разработан специалистами «Космоснимки Ру» на базе технологии Scanex GeoMixer .

Работа с «картой пожаров»

Основным пользовательским сервисом является карта пожаров.
По дефолту показывается информация за период – последние 24 часа + текущие сутки до 12 часов UTC (пока не произойдет смена дат во всем мире). На обзорном масштабе показывается динамическая карта плотностного распределения пожаров на основе кластеров (подробнее см ), с помощью зумирования карты можно перейти на более крупный масштаб, на котором показываются контуры кластеров и, еще ближе, все термоточки (см ).
Основными элементами UI* являются:
  • - интерактивное окно карты и тулбар
  • - боковая панель с виджетами:
    • [закладки] - сохраненные места и даты с описанием события
    • [слои] - список слоев и групп слоев
    • [новости] - виджет новостей о пожарах

Доступ к информации о пожарах

Пользователи получают доступ к информации, заходя на сайт Космоснимки - Пожары либо подписавшись на оповещения о пожарах (см. описание сервиса) Разработчики сайтов и веб-приложений могут использовать API «карты пожаров» для встраивания карты во внешние сайты (подробнее см документацию по использованию API). Для использовании необходимо зарегистрировать API-ключ и сохранять ссылки и информацию о правообладателях.
Если вы хотите использовать прямой доступ к базе данных пожаров, транслирующий данные в JSON, XML или другие форматы (либо регулярные выгрузки из БД) – напишите нам запрос на почту , публичное использование этой части сервиса ограничено. При использовании данных с сайта: скриншотов, координат пожаров и т.д., ссылайтесь на источник, это поможет большему количеству заинтересованных пользователей узнать о наличие такого информационного ресурса.

Открытые данные

Если вы планируете использовать данные - пожалуйста, ссылайтесь на сайт и на авторов.
Доступные слои:
Описание Формат Источник
Границы сгоревших территорий 2010 Shape файл 2010 год, © OpenStreetMap, Гринпис
участки нарушений (в основном - пожары) на особо охраняемых природных территориях Shape файл 2008-2011, © Transparent World
(заводы, факела от сжигания попутного газа при разработке нефтянных месторождений). Слой используется в проекте для фильтрации рзультатов детектирования пожаров. CSV © Kosmosnimki
Границы осушенных торфяников (в основном запад РФ). Слой пополняется. Shape файл © Гринпис, Kosmosnimki
Если вы использовали данные сервиса в своей научной, исследовательской или проектной работе – пожалуйста, сохраняйте информацию об источнике (© RDC SCANEX, Fires.Kosmosnimki.Ru)

Дополнительные данные

  • Оперативные данные: Кроме результатов детектирования очагов пожаров, сервис «Космоснимки - Пожары» предоставляет доступ к RGB синтезированным изображениям спутниковой съемки:
    - данные MODIS, по которым детектируются пожары, принимаемые на станции СКАНЭКС. С помощью изображений можно оценивать состояние облачности в момент проводимых наблюдений, видеть отдельные крупные пожары и следы гарей
    - Данные Landsat 8 также являются публично доступными снимками высокого разрешения (30 м). Фильтруются по пересечению с точками пожаров в диапазоне 24 часа.
    - Более детальные космоснимки, как правило, представляют собой коммерческие спутниковые программы и доступны в ограниченном режиме для специалистов МЧС и других ведомств, в интересах которых осуществляется съемка. Мы не можем дать публичный доступ ко всем более детальным снимкам, являющимся частью коммерческих программ, но если вы заинтересованы в работе с этими данными - пожалуйста, обратитесь к нам
  • Данные о погоде: оперативные данные и прогноз по облачности, осадкам, температуре и скорости ветра интегрированы от провайдера ГИС-Метео. Данные о погоде привязаны к региональным центрам. В будущем планируется увеличить детальность данных и добавить результаты аналитической обработки прогнозных данных.
  • Границы особо охраняемых природных территорий: В состав данных входят границы федеральных заповедников, национальных парков и федеральных заказников. А также границы некоторых региональных ООПТ. Специальный проект по мониторингу нарушений и пожаров в пределах ООПТ ведет НП «Прозрачный Мир» (см. http://new.transparentworld.ru/ru/environment/monitoring/oopt/)
  • Слой часовые пояса: Атрибуты данных о зарегистрированных очагах пожаров содержат время пролета спутника, когда был получен снимок, по которому проводилось детектирование. Время детектирования очагов отображается в универсальном координированном времени (UTC). Включив слой «часовые пояса», пользователи могут видеть в каком часовом поясе находится исследуемая территория и насколько локальное время отличается от UTC. Например, если мы смотрим очаги в районе озера Байкал, то локальное время пролета спутника равняется времени UTC+8. Следует помнить, что время по UTC не переводится ни зимой, ни летом. Поэтому для тех мест, где есть переход на летнее время, смещение относительно UTC меняется.
  • Границы кадастрового деления: границы и тематические слои публичной кадастровой карты портала Росреестра (Виды разрешенного использования; Категории земель и т.д.).

Детектирование пожаров по спутниковым изображениям

Программа NASA по спутниковому мониторингу Земли (Earth Observation System) позволяет свободно использовать данные оперативной съемки, осуществляемой с помощью камеры MODIS, установленной на борту спутников Terra и Aqua. Компания СКАНЭКС ведет прямой прием этих данных на станции в приемных центрах в Москве, Иркутске и Магадане. Принятые данные поступают в автоматическую цепочку обработки и подготовки продуктов, которая включает стадию первичной обработки данных, создание на основе базовых продуктов MODIS тематических продуктов высокого уровня (таких как маски ледового и снежного покровов, маска облачности, температура поверхности, пожары и тепловые аномалии etc.), подготовку продуктов для интернет-доступа и публикацию в портале. На карте пожаров данные спутников Terra, Aqua и используются для детектирования вероятных очагов пожаров и для подготовки ежедневного обзорного покрытия (слой «Космоснимки - MODIS»).
Характеристики камеры MODIS, установленной на борту спутников Terra и Aqua:

Алгоритмы детектирования пожаров в автоматическом режиме основаны на их сильном излучении в инфракрасном диапазоне. Это так называемый контекстно-пороговый алгоритм. Разница в температурных яркостях пикселей отражает разницу между температурой очагов пожара и земной поверхности, а информация, поступающая с других спектральных каналов, помогает замаскировать облака. Кроме того, применяют пороговые значения, чтобы отбросить термальные аномалии, маловероятно относящиеся к пожарам. Таким образом выходным продуктом работы алгоритма является маска пикселей, классифицированных как "термоточки" (hotspots) и их характеристики. Подробнее см. статью «Данные по тепловым аномалиям MOD14A1: описание и получение»

Детектирование пожара по съемкам: 1 km Terra/MODIS (слева), 375 m VIIRS (в центре), and 1 km Aqua/MODIS (справа) в Южной Ьразилии 26-31 марта 2013
C сайта http://viirsfire.geog.umd.edu/

Вероятность обнаружения пожаров

Данные мониторинга пожаров являются контекстной оценкой, на степень точности которой влияют многие факторы. В первую очередь, сплошная облачность. Очаги (термоточки, тепловые аномалии) с высокой степенью вероятности детектируются при безоблачной или малооблачной погоде (см. ). Кроме того, на вероятность обнаружения пожара влияют такие факторы как разностная температура и размер пожара. (см. ).

Потеря видимости пожаров со спутника из-за облачности

На основе тех же данных MODIS, по которым ведется детектирование пожаров, делается RGB синтез (каналы 7-2-1) изображений с целью визуализации обзорного покрытия снимками за текущие сутки. Доступен просмотр архивных слоев обзорного покрытия. Таким образом, с помощью этих изображений можно оценивать состояние облачности в момент проводимых наблюдений.

Координаты очагов пожаров

Очаги пожаров детектируется по инфракрасным каналам MODIS, линейное разрешение которых составляет 1 км/пиксел. Это означает, что каждый обнаруженный очаг отображается как точка в центре пикселя 1 км x 1 км. В действительности очаг может быть локализован где-то внутри данной области и реальная площадь пожара может быть меньше (см )

Когда несколько точек располагаются в линию, как правило, такое изображение иллюстрирует огневой фронт пожара. Соседние, близко расположенные точки, могут в действительности относиться к одному и тому же продолжающемуся пожару (подробнее см. )

Минимальный размер детектируемых пожаров

Не смотря на то, что площадь пикселя (элементарной области наблюдения) в инфракрасном канале 1км 2 , в среднем детектирует открытые очаги и тлеющие пожары на площади от 1/10 гектара. В реальности минимальная площадь детектируемого пожара зависит от целого спектра характеристик в момент конкретной съемки (облачность, освещенность, угол съемки, тип растительности, температура поверхности и т.д.) Более яркие открытые очаги с большей температурой горения могут быть зарегистрированы на меньшей площади возгорания. Характерный пример - газовые факела или трубы заводов, которые при этом являются с точки зрения задачи детектирования пожаров.

Кластеры пожаров

Кластеры - это отдельные очаги (термоточки), объединенные в одну группу. Объединение проводится на основе автоматического алгоритма и не гарантирует стопроцентную точность. Кластеризация помогает:
  • - визуализировать большое количество термоточек и улучшить "читаемость" информации на обзорных масштабах
  • - отследить динамику развития пожаров: контуром обводятся очаги, принадлежащие одному кластеру и попадающие в выбранный период
  • - приблизительно оценить силу пожара (там, где на текущую дату или период кластеризуется больше термоточек – более мощный пожар)
  • - приблизительно оценить площадь активного пожара по суммарному контуру термоточек, вошедших в кластер
  • - приблизительно оценить суммарную площадь выгоревшей территории за период
  • - на мелких масштабах карты (уровни 1-3) кластеры пожаров визуализируются в виде динамической "тепловой карты", что позволяет быстрее визуализировать и анализировать большой объем данных

Очаг попадает в кластер когда в его окрестности регистрируются другие очаги за период более чем один день. Это помогает визуально отфильтровать «ложные пожары», которые появляются, например из-за бликов, и кратковременные пожары, которые обусловлены, например, палами сухой травы и еще не представляют реальной угрозы. Две группы очагов, которые несколько дней назад были одним пожаром, и затем разделились, все равно будут являться частью одного кластера за весь суммарный период горения, даже если за часть периода отображаются разными контурами. Интуитивно кластеры можно считать соотносящимися с выгоревшими территориями. При этом все отдельные очаги (все термоточки), вошедшие и не вошедшие в кластеры, показываются на карте, начиная с 11 уровня зума.

Площади горевших территорий

Новой функциональностью сервиса, появившейся в 2012 году, является оперативная оценка площадей территорий, затронутых огнем, методом аппроксимации по "точкам пожаров". Первичными данными о пожарах в сервисе являются продукты MOD14A1, содержащие информацию о том, какие пиксели на спутниковом изображении были классифицированы как вероятные пожары. После этого вступает в действие , который группирует эти отдельные точки по принципу плотностного распределения с учетом дополнительного временного параметра. На основе этого мы можем сделать выводы относительно динамики развития пожара, подсчитать продолжительность горения пожара. Новый алгоритм позволяет в дополнение к «кластеризации» суммировать пиксельные площади точек пожаров (каждая точка это, в среднем, квадратный пиксель со сторонами 1км) и провести аппроксимированную по точкам оценку вероятной площади пожара .

Статистика пожаров

Сервис статистики пожаров публикует в табличном виде данные о пожарах: Кол-во кластеров пожаров; Кол-во термоточек; Общая площадь горевших территорий. Доступны следующие показатели с возможностью просмотра и сравнения посуточной статистики:
  • Интегральная статистика РФ
  • С разбивкой по административно-территориальному делению: Субъектам РФ и относящимся к ним районам
  • По границам Особо-охраняемых природных территорий (в разработке)
В дополнение к табличному выводу статистика отображается на карте - слой "Статистика пожаров по районам".

В настоящее время сервис работает в статусе "бета".

Техногенные источники тепла

Техногенные источники, такие как трубы заводов, факела от сжигания попутного газа при разработке месторождений, вносят ложный вклад в информацию о пожарах. Количество таких «ложных тревог» может быть достаточно большим на общей обзорной карте пожаров. Поэтому для предварительной оценки ситуации имеет смысл определять автоматическим способом какие из точек пожаров могут относиться к техногенному излучению. Поскольку такие объекты характеризует скопление "точек" в одной локальной области и повторяемость горения, нами был проведен анализ архивных данных о пожарах и картирование объектов с целью выявления потенциальных источников.

Таким образом, была создана начальная база техногенных источников, верификация которых проводилась по спутниковым снимкам и сервису Wikimapia.Org. Эта база представляет собою открытые данные и может быть использована свободно с условием указания ссылки на «Космоснимки - Пожары» . Важно понимать, что база этих объектов предоставляется без каких-либо гарантий их достоверности и с той полнотой информации, которой она обладает на данный момент, а новые объекты постепенно добавляют и верифицируют пользователи сервиса. В настоящее время в сервисе «Космоснимки - Пожары» каждая новая термоточка, попадающая в окрестность 5 км от техногенного объекта, помечается как потенциальный техногенный источник тепла . Разумеется, окончательное решение о достоверности и типе источника остается за пользователем.

Верификация данных о пожарах

Данные автоматического детектирования пожаров на основе продуктов MOD14 носят вероятностный и выборочный характер. Поэтому для получения более точного и полного результата необходимо использовать инструменты верификации, основанные на дополнительных источниках информации. Такими источниками, которые могут быть интегрированы в сервис или использованы при анализе данных, являются: информация от пользователей, изображения с видеокамер, автоматическая или ручная обработка данных со спутников высокого разрешения. Основным источником проверки служат оперативные спутниковые снимки высокого разрешения, на которых можно воочию увидеть пожары. Кроме того, малоразмерные очаги пожаров и низкотемпературные очаги, характеризующиеся слабой интенсивностью теплового излучения (такие как торфяные пожары ) могут быть обнаружены в инфракрасном диапазоне сканерами более высокого разрешения (e.g. разрешение инфракрасных каналов SPOT-5 составляет 10м/пиксел). Сами данные SPOT-5 распространяются на коммерческой основе, но результаты верификации, полученные с использованием этих данных, планируются к выкладыванию на публичный сервис.

Перспективные источники данных

Качество информационного сервиса определяется наличием и качеством доступных источников. Новыми источниками должны аппараты ДЗЗ нового поколения, а также наземные дистанционные методы, такие как видеомониторинг - камеры видеонаблюдения и тепловизоры, которые устанавливаются на вышках сотовой связи.
Мы продолжаем работать над поиском новых партнеров и консолидацией данных вокруг информации о пожарах. Мы уверены, что только объединение усилий и открытость информации будут способствовать пониманию причин природных пожаров, сокращению угроз и рисков, связанных с ними.

Решения для организаций на основе сервиса мониторинга пожаров

В качестве решения для ваших задач мы предлагаем разворачивание портала на основе карты пожаров с возможностью индивидуальных настроек системы, публикации собственных данных заказчика, управления списками подписок на оповещения по пожарам и гарантированной технической поддержкой

Общая информация
Оперативный мониторинг пожаров осуществляется по данным 2 спутников: Aqua и Terra. На каждом из них установлена камера MODIS позволяющая снимать землю в различных частях спектра: от видимого до инфракрасного. Спутники снимают одну и ту же территорию 2-4 раз в сутки. Полученная информация автоматически обрабатывается.
Автоматическое дешифрирование пожаров основано на значительной разнице температур земной поверхности и очага пожара.
Для анализа используются тепловые каналы, а информация с других каналов спутника помогает отделить облака. После автоматической обработки получается маска тех пикселей снимка, температура которых существенно отличается от окружающих "горячие точки" или "термоточки". Время обработки-15-40 минут с момента пролета спутника. Следует помнить, что время пролета спутника дается по Гринвичу (UTS)! Московское время= UTS+4 часа!
Этот метод имеет ряд ограничений. В "горячие точки" попадают любые объекты, отличающиеся по температуре (например факелы на нефтепромыслах, ТЭЦ, нагретые крыши больших зданий). Часть слабых пожаров не учитывается из-за небольшой разницы температур. Часть пожаров, прошедших в перерывах между пролетами спутников, так же не учитывается. Бывают ложные срабатывания из-за сильной облачности.
Тем не менее эти данные можно и нужно использовать для мониторинга пожаров, особенно на больших территориях, где нет возможности вести наземное наблюдение.
Есть 3 алгоритма обработки снимков:
1. The Fire Information for Resource Management System (FIRMS) Университет штата Мэриленд (США)
2. ScanEx Fire Monitoring Service (SFMS) ИТЦ "СканЭкс"
3. «Пожарная» часть информационной системы дистанционного мониторинга ИСДМ-Рослесхоз
Каждый имеет свои достоинства и недостатки. Система FIRMS более чувствительна, способна выявлять совсем слабые пожары, но дает большое число ложных срабатываний. SFMS менее чувствительна, соответственно, пропускает часть слабых пожаров, зато дает гораздо меньше ложных срабатываний.

Использование
1. Чтобы знать примерное время получения данных, надо посмотреть расписание пролетов 2 спутников.
Aqua http://www.ssec.wisc.edu/datacenter/aqua/
Terra http://www.ssec.wisc.edu/datacenter/terra/
По ссылкам переходим на страницы, выбираем нужную территорию и дату.

Открывается страница со схемой пролетов спутника


Спутник снимает полосу вдоль траектории полета. Фрагмент такой полосы на рисунке обозначен синим контуром. Ширина полосы съемки в каждую сторону от траектории (зеленая стрелка) примерно равна половине расстояния между соседними траекториями (оранжевая стрелка)

Над одной территорией спутники пролетают 2-4 раза в день, соответственно столько раз будет обновляться информация о горячих точках. На сайтах информация обновиться через 15-40 минут после пролета.

Просматривать термоточки можно либо на специальных сайтах, либо в программе "Google Планета Земля"
Сайты. Основных сейчас 3.
Самый функциональный и быстро загружающийся, на мой взгляд, сайт Космоснимки http://fires.kosmosnimki.ru/

Предоставляет по умолчанию данные системы SFMS, позволяет просматривать данные FIRMS


Увеличить или уменьшить изображение можно при помощи лупы или линейки "уровень увеличения"

Галочка Космоснимки позволяет просматривать последние снимки спутников Aqua, Terra. Снимки видны только до 9 уровня увеличения.

Любой нарисованный контур, например крупный пожар, видимый на снимке MODIS, можно скачать (ссылка "скачать shp-файл" под данными о площадях). Так же можно добавить свои контуры в векторном формате (заархивированный шейп-файл) .

Отдельные горячие точки видны с 8 уровня увеличения.

Можно просматривать данные не только за один день, но и за любой период времени, для этого надо нажать на треугольник справа от даты. Появиться красная рамка, в пределах которой будут видны термоточки. Ее форму и размеры можно менять, двигая курсором за углы или за линии. В двух окошках нужно выставить начальную и конечную даты.

Сайт FIRMS, прост и понятен, хоть и на английском. Минус-долго загружается.


Если полистать закладки, можно найти полезное, например включение слоя с границами ООПТ, возможность переключения с карты на подложку из снимков, информацию о времени последнего обновления.
Сайт «Пожарной» части информационной системы дистанционного мониторинга ИСДМ-Рослесхоз firemaps.nffc.aviales.ru/clouds/html/cl ouds_proj.html. Тоже все просто.

Если не хочется лазить по сайтам, можно просматривать термоточки в программе "Google Планета Земля"

Пожары могут принести колоссальный ущерб природе и, чтобы избежать его последствий, производят мониторинг лесных пожаров. Способы различные: есть проверенные временем визуальные осмотры, также практикуют наблюдение с помощью спутников и современной техники. Эффективно использовать системы мониторинга лесных пожаров в комплексе. В Российской Федерации действуют профильные службы и учреждения для сбора, анализа и структурирования данных.

Визуальный осмотр

В некоторых лесах можно встретить специальные вышки. Эти строения выступают в роли наблюдательных пунктов. Их строительством обычно занимаются лесные хозяйства. Вышки оборудуют средствами связи, на наблюдательном пункте есть азимутальный круг. Он нужен для определения направления пожара.

Лес делят на территории по радиусу обзора с такой башни – 5-7 км. Вышки строят из дерева, но в последнее время многие элементы их конструкции меняют на металлические. Срок жизни строений с наблюдательными пунктами из дерева менее 10 лет.

Осмотр лесных территорий осуществляет специальный человек. При обнаружении пожара он определяет его направление, возможную опасность и передает информацию на диспетчерский пункт через радио или телефонную связь.

Проблема этого способа мониторинга в малочисленности наблюдательных вышек и работников. Раньше лесничих было на порядок больше, сейчас их количество сократилось в несколько раз.

На части наблюдательных вышек устанавливают видеокамеры. Это не решает основной проблемы, потому что за съемкой должен наблюдать человек в оборудованном пункте. Если система видеонаблюдения автоматизирована, то задача упрощается, но в большинстве камеры требует ручного управления.

Помимо этого, съемка ведется в одном направлении, поэтому необходимо установить несколько камер. Вышки сотовой связи тоже используют для мониторинга. На них устанавливают тепловизоры и видеокамеры.

Исследования с помощью спутников

Один из самых недорогих способов – это спутниковый мониторинг. Спутники с помощью сканеров делают снимки в инфракрасном спектре. Это позволяет узнать разницу температур и определить, где идут лесные пожары.

Данные и снимки обрабатываются на космическом аппарате, где исправляют искажения, делают привязку к географическим точкам. Последний этап обработки, который включает цифровой анализ, визуальное дешифрирование и интерпретацию снимков, производят в автоматическом или интерактивном режиме.

Информацию о лесных пожарах можно увидеть на специальных сайтах, например . Созданы федеральные системы мониторинга лесных пожаров. Они составляют общую картину, используя данные визуального осмотра, спутниковых снимков и других методов мониторинга.

Этот дистанционный метод входит в список функций экологического мониторинга. С помощью спутников также получают метеорологические характеристики, данные о техногенной обстановке, разливе рек, динамике снежных покровов, тепловых выбросах. Каждой области применения соответствует определенный канал, его обозначают цветом.

Карта пожаров в России доступна всем заинтересованным пользователям.

Информация обновляется в среднем 4 раза в день. Это усложняет идентификацию возгораний и снижает оперативность помощи пожарной охраны. Периодичность обновления зависит от времени пролета спутников по орбите. Основные данные предоставляет серия американских спутников NOAA.

Работают и частные спутники, их снимки отличаются точностью и детальностью, но стоят дороже общедоступных. Поэтому наряду с космоснимками используют данные визуального осмотра. На карте пожаров указывают точки пожаров и возможные причины их возникновения. Существует индийская система спутникового мониторинга.

На точность космоснимков влияют многие факторы. Например, повышенная облачность мешает как обнаружению лесных пожаров, так и определению их размера. Очаги возгораний на картах могут не совпадать с реальными, но их примерные координаты очерчены границами.

То есть на карте показана область, где есть очаг. Несколько пожаров на карте обычно объединяют в единый кластер. В этом случае точность также не достоверная. По этим данным определяют площадь пожара и скорость его распространения в лесах. Есть возможность получать оповещения о выявлении лесных пожаров, если оформить подписку на соответствующем сервисе.

Альтернативные методы

В качестве вспомогательных методов мониторинга лесных пожаров называют также осмотр территорий с воздуха. Наблюдение осуществляют с вертолетов, самолетов. В последние годы применение в этом направлении нашли беспилотные летательные аппараты, которые делают видеозаписи.

Стоимость всех перечисленных способов высокая. Из-за этого невозможно организовать непрерывный мониторинг в лесной зоне. Однако при возможности и достаточном финансировании летательные аппараты позволяют получать точную информацию в режиме реального времени. Кроме того, авиация способна тушить пожары при их обнаружении.

В России для тушения и мониторинга лесных пожаров с помощью вертолетов и пожарных самолетов создано федеральное учреждение «Авиалесоохрана». В состав экипажа воздушного судна входит летчик, парашютист-пожарный и десантник-пожарный, которые прошли специальную подготовку.

Статистика

Помимо наполнения интерактивной карты лесных пожаров, ведется их статистика. Она имеет не только информационный характер. На основе полученных данных анализируют причины возгораний, скорость их распространения.

Это необходимо для , составления прогнозов, организации эффективного тушения. По пожарной опасности определяют экономический ущерб. Статистические данные и картографирование позволяют отличать пожары от техногенных источников тепла, которыми могут быть производственные объекты.

Первые записи о лесных пожарах в летописях датированы 1724 годом. Уже тогда были призывы сохранить угодья от огня. Во времена царской России данные уже упорядочивали. Сегодня информация о лесных пожарах сводится в таблицы. Статистику ведут ведомства и службы.

По данным Росстата последние массовые пожары были зафиксированы в летний период 2010 года. Однако их количество не рекордное, экологический и экономический ущерб был причинен вследствие больших территорий, охваченных огнем, и задымлением.

В 2010 году в общей сложности произошло более 39000 лесных пожаров. Тогда сгорело на корню около 150000000 м 3 лесов. Аналогичные масштабы лесных пожаров наблюдали в 1998 году. По количеству пожаров лидирует 2002 год – 434000 возгораний, но последствия не столь плачевны.

Спутниковый мониторинг лесных пожаров

Задача оперативного обнаружения и мониторинга очагов пожаров приобретает особую актуальность в связи с большой территорией, занятой лесами. Кроме нанесения ущерба лесному хозяйству, пожары оказывают сильное влияние на экологическую обстановку и могут угрожать жизни людей.
Реальные масштабы горимости лесов России и размеры наносимого огнем ущерба до настоящего времени не установлены. Регулярные наблюдения за лесными пожарами ведутся только в зоне активной охраны лесов, охватывающей 2/3 общей площади лесного фонда. В северных районах Сибири и Дальнего Востока, охватывающих 1/3 лесного фонда страны, учет пожаров и активная борьба с огнем практически отсутствуют. В зоне активной охраны лесов ежегодно регистрируется от 15 до 30 тыс. лесных пожаров на площади от 0,5 до 2,5 млн га.
Своевременное обнаружение очагов пожаров и определение их характеристик - одна из серьезнейших задач. Наиболее распространенный и традиционный способ ее решения в региональном масштабе - организация авиапатрулирования пожароопасных областей, что требует значительных материальных затрат. Из общей активно охраняемой площади в 760 млн га, обслуживаемая авиацией территория охватывает около 725 млн га. При этом около 550 млн га, расположенных в таежной зоне с редкой сетью дорог, отнесены к районам преимущественного применения авиационных средств пожаротушения. Резкое снижение ассигнований, выделяемых на охрану лесов в последние годы, в наибольшей степени отразилось на авиационной охране лесов. Следствием этого стало существенно возросшее число выходящих из-под контроля лесных пожаров, принимающих характер стихийных бедствий.
В этой связи возникает необходимость привлечения всех доступных средств оперативного обнаружения пожаров на ранней стадии их развития, что объясняет возрастающую роль в этом спутниковых систем дистанционного зондирования Земли. Космический мониторинг имеет ряд преимуществ, по сравнению с авиаразведкой: высокую оперативность, большую площадь охвата земной поверхности и меньшие операционные расходы. На охраняемой территории спутниковые данные служат существенным дополнением к традиционным методам обнаружения, а на неохраняемой – единственным средством мониторинга и оценки последствий лесных пожаров.
Обнаружение пожаров на снимках Земли из космоса возможно благодаря значительной разнице температур земной поверхности (обычно не выше 10-25 град. С) и очага пожара (300-900 град. С), что приводит к разнице в тепловом излучении этих объектов в тысячи раз. Эта особенность позволяет, при съемке тепловой аппаратурой с пространственным разрешением 1 км, обнаружить очаг пожара площадью 100 м2, или зону тления площадью 900 м2. Оперативное обнаружение очагов возгорания такой площади позволяет принять своевременные меры к их ликвидации.
Из современных спутников для целей оперативного пожарного мониторинга наибольшее применение нашли спутники серий NOAA (радиометр AVHRR с пространственным разрешением 1 100 м и полосой обзора – 3 000 км) и EOS (спутники Terra и Aqua с установленным на них радиометром MODIS с пространственным разрешением 250, 500, 1 000 м и полосой обзора 2 330 км).
Каждая из этих спутниковых систем позволяет осуществлять оперативный контроль обширных территорий с получением данных не реже 6 раз в сутки (спутники серии NOAA) и 4-6 раз в сутки (спутники серии EOS).
Выбор именно этих спутниковых систем объясняется, в первую очередь, безлицензионным (бесплатным) приемом снимков с этих систем при наличии приемной станции, а также появлением в последнее время относительно недорогих, по сравнению с зарубежными аналогами, приемных станций. Например, станции СканЭкс для приема данных AVHRR и станции ЕОСкан и УниСкан для приема данных MODIS спутников серии EOS, разработанные и поставляемые ИТЦ СканЭкс.
Алгоритм автоматического определения очагов пожаров реализован в программном обеспечении, поставляемом ИТЦ «СканЭкс»:
- ScanViewer (для спутников серии NOAA);
- ScanEx MODIS Processor (для спутников серии EOS).
Возможно совместное использование данных со спутников серий NOAA и EOS. Это повышает оперативность получения информации и увеличивает вероятность раннего обнаружения очагов пожара.
Существует несколько вариантов получения снимков обеих систем потребителем:
- по сети Internet практически в режиме реального времени;
- получение снимков со спутников серии EOS по сети Internet в дополнение к приему данных со спутников серии NOAA на собственную приемную станцию;
- прием данных обеих систем на собственные приемные станции.
Оба источника информации, т.е. AVHRR-NOAA, а в последнее время также MODIS-EOS, используются для целей пожарного мониторинга во многих странах (например, в Бразилии, Канаде, Финляндии). В США данные, получаемые с обеих систем, использовались во время катастрофических пожаров 2000 г. в штатах Монтана и Айдахо. В Финляндии разработана и отлажена национальная автоматическая программа приема, обработки и рассылки сообщений об обнаруженных лесных пожарах на места.
В нашей стране для проведения оперативного космического мониторинга в интересах служб пожароохраны лесов функционируют приемные центры, развернутые во многих городах. Так, создана ведомственная сеть станций Министерства Природных Ресурсов России с центрами приема спутниковых данных в гг. Москве, Екатеринбурге, Иркутске, Якутске, Южно-Сахалинске и Геленджике.

Давно обещала вывесить краткую инструкцию... Вот, выполняю.

Общая информация
Оперативный мониторинг пожаров осуществляется по данным 2 спутников: Aqua и Terra. На каждом из них установлена камера MODIS позволяющая снимать землю в различных частях спектра: от видимого до инфракрасного. Спутники снимают одну и ту же территорию 2-4 раз в сутки. Полученная информация автоматически обрабатывается.
Автоматическое дешифрирование пожаров основано на значительной разнице температур земной поверхности и очага пожара.
Для анализа используются тепловые каналы, а информация с других каналов спутника помогает отделить облака. После автоматической обработки получается маска тех пикселей снимка, температура которых существенно отличается от окружающих "горячие точки" или "термоточки". Время обработки-15-40 минут с момента пролета спутника. Следует помнить, что время пролета спутника дается по Гринвичу (UTS)! Московское время= UTS+4 часа!
Этот метод имеет ряд ограничений. В "горячие точки" попадают любые объекты, отличающиеся по температуре (например факелы на нефтепромыслах, ТЭЦ, нагретые крыши больших зданий). Часть слабых пожаров не учитывается из-за небольшой разницы температур. Часть пожаров, прошедших в перерывах между пролетами спутников, так же не учитывается. Бывают ложные срабатывания из-за сильной облачности.
Тем не менее эти данные можно и нужно использовать для мониторинга пожаров, особенно на больших территориях, где нет возможности вести наземное наблюдение.
Есть 3 алгоритма обработки снимков:
1. The Fire Information for Resource Management System (FIRMS) Университет штата Мэриленд (США)
2. ScanEx Fire Monitoring Service (SFMS) ИТЦ "СканЭкс"
3. «Пожарная» часть информационной системы дистанционного мониторинга ИСДМ-Рослесхоз
Каждый имеет свои достоинства и недостатки. Система FIRMS более чувствительна, способна выявлять совсем слабые пожары, но дает большое число ложных срабатываний. SFMS менее чувствительна, соответственно, пропускает часть слабых пожаров, зато дает гораздо меньше ложных срабатываний.

Использование
1. Чтобы знать примерное время получения данных, надо посмотреть расписание пролетов 2 спутников.
Aqua http://www.ssec.wisc.edu/datacenter/aqua/
Terra http://www.ssec.wisc.edu/datacenter/terra/
По ссылкам переходим на страницы, выбираем нужную территорию и дату.

Открывается страница со схемой пролетов спутника


Спутник снимает полосу вдоль траектории полета. Фрагмент такой полосы на рисунке обозначен синим контуром. Ширина полосы съемки в каждую сторону от траектории (зеленая стрелка) примерно равна половине расстояния между соседними траекториями (оранжевая стрелка)

Над одной территорией спутники пролетают 2-4 раза в день, соответственно столько раз будет обновляться информация о горячих точках. На сайтах информация обновиться через 15-40 минут после пролета.
Просматривать термоточки можно либо на специальных сайтах, либо в программе "Google Планета Земля"Сайты. Основных сейчас 3.
Самый функциональный и быстро загружающийся, на мой взгляд, сайт Космоснимки http://fires.kosmosnimki.ru/

Предоставляет по умолчанию данные системы SFMS, позволяет просматривать данные FIRMS


Увеличить или уменьшить изображение можно при помощи лупы или линейки "уровень увеличения"

Галочка Космоснимки позволяет просматривать последние снимки спутников Aqua, Terra. Снимки видны только до 9 уровня увеличения.

Любой нарисованный контур, например крупный пожар, видимый на снимке MODIS, можно скачать (ссылка "скачать shp-файл" под данными о площадях). Так же можно добавить свои контуры в векторном формате (заархивированный шейп-файл) .

Отдельные горячие точки видны с 8 уровня увеличения.

Можно просматривать данные не только за один день, но и за любой период времени, для этого надо нажать на треугольник справа от даты. Появиться красная рамка, в пределах которой будут видны термоточки. Ее форму и размеры можно менять, двигая курсором за углы или за линии. В двух окошках нужно выставить начальную и конечную даты.

Сайт FIRMS, прост и понятен, хоть и на английском. Минус-долго загружается.


Если полистать закладки, можно найти полезное, например включение слоя с границами ООПТ, возможность переключения с карты на подложку из снимков, информацию о времени последнего обновления.
Сайт «Пожарной» части информационной системы дистанционного мониторинга ИСДМ-Рослесхоз firemaps.nffc.aviales.ru/clouds/html/cl ouds_proj.html. Тоже все просто.

Если не хочется лазить по сайтам, можно просматривать термоточки в программе "Google Планета Земля"