Строение коры головного мозга.

Кора головного мозга — высший отдел ЦНС, который обеспечивает совершенную организацию поведения человека. По факту она предопределяет сознание, участвует в управлении мышлением, способствует обеспечению взаимосвязи с внешним миром и функционирования организма. Она устанавливает взаимодействие с внешним миром посредством рефлексов, что позволяет надлежащим образом адаптироваться к новым условиям.

Указанный отдел ответственный за работу самого мозга. Сверху определенных участков, взаимосвязанных с органами восприятия, образовались зоны, обладающие подкорковым белым веществом. Они важны при сложном обрабатывании данных. Вследствие появления такого органа в мозге начинается следующая стадия, на которой значение ее функционирования существенно возрастает. Данный отдел является органом, который выражает индивидуальность и сознательную деятельность индивида.

Общая информация о коре ГМ

Представляет собой поверхностный слой толщиной до 0,2 см, который покрывает полушария. Он предусматривает вертикально ориентированные нервные окончания. Этот орган содержит центростремительные и центробежные нервные отростки, нейроглии. Каждая доля этого отдела несет ответственность за определенные функции:

  • – слуховая функция и обоняние;
  • затылочная – зрительное восприятие;
  • теменная – осязание и вкусовые рецепторы;
  • лобная – речь, двигательная активность, сложные мыслительные процессы.

По факту кора предопределяет сознательную деятельность индивида, участвует в управлении мышлением, взаимодействует с внешним миром.

Анатомия

Выполняемые корой функции зачастую обусловлены ее анатомическим строением. Структура имеет свои характерные черты, выраженные в разном числе слоев, габаритах, анатомии образующих орган нервных окончаний. Специалисты выделяют следующие разновидности слоев, взаимодействующих между собой и помогающих функционировать системе в целом:

  • Молекулярный слой. Помогает создать хаотично связанных дендритных формирований с малым числом клеток, имеющих веретенообразную форму и обусловливающих ассоциативную деятельность.
  • Наружный слой. Выражается нейронами, имеющими разные очертания. После них локализуются внешние контуры структур, имеющих пирамидальную форму.
  • Наружный слой пирамидального типа. Предполагает наличие нейронов разных размеров. По форме данные клетки схожи с конусом. Сверху выходит дендрит, обладающий наибольшими размерами. связаны при помощи деления на незначительные образования.
  • Зернистый слой. Предусматривает нервные окончания незначительного размера, локализованных обособленно.
  • Пирамидальный слой. Предполагает наличие нейронных цепей, обладающих различными габаритами. Верхние отростки нейронов способны доходить до начального слоя.
  • Покров, содержащий нейронные связи, напоминающие веретено. Часть из них, находящаяся в нижней точке, может достигать уровня белого вещества.
  • Лобная доля
  • Играет ключевую роль для сознательной деятельности. Участвует в запоминании, внимании, мотивации и прочих задачах.

Предусматривает наличие 2 парных долей и занимает 2/3 всего мозга. Полушария осуществляют контроль противоположных сторон туловища. Так, левая доля регулирует работу мышц правой стороны и наоборот.

Лобные части имеют важное значение в последующем планировании, включая управление и принятие решений. Кроме того, они выполняют следующие функции:

  • Речевая. Способствует выражению словами мыслительных процессов. Поражение данного участку может повлиять на восприятие.
  • Моторика. Дает возможность влиять на двигательную активность.
  • Сравнительные процессы. Способствует проведению классификации предметов.
  • Запоминание. Каждый участок мозга имеет важное значение в процессах запоминания. Лобная часть формирует долгосрочную память.
  • Личностное формирование. Дает возможность взаимодействовать импульсам, памяти и прочим задачам, образующим главные характеристики индивида. Поражение лобной доли кардинальным образом меняет личность.
  • Мотивация. Большая часть чувствительных нервных отростков расположены в лобной части. Дофамин способствует поддержанию мотивационной составляющей.
  • Контроль внимания. Если лобные части не способны осуществлять управление вниманием, то формируется синдром нехватки внимания.

Теменная доля

Охватывает верхнюю и боковую части полушария, а также разделяются центральной бороздой. Функции, которые выполняет данный участок, различаются для доминантной и недоминантной сторон:

  • Доминантная (преимущественно левая). Несет ответственность за возможность понимания устройства целого через соотношение его составляющих и за синтез информации. Кроме того, дает возможность осуществления взаимосвязанных движений, которые требуются для получения конкретного результата.
  • Недоминантная (преимущественно правая). Центр, который перерабатывает данные, поступающие из затылочной части, и обеспечивает 3-хмерное восприятие происходящего. Поражение данного участка ведет к неспособности распознавания объектов, лиц, пейзажей. Так как зрительные образы перерабатываются в мозге обособленно от данных, поступающих из остальных органов чувств. Кроме того, сторона принимает участие в ориентации в пространстве человека.

Обе теменные части принимают участие в восприятии температурных изменений.

Височная

Она реализует сложную психическую функцию – речь. Расположена на обоих полушариях сбоку в нижней части, тесно взаимодействуя с близлежащими отделами. Данная часть коры обладает наиболее выраженными контурами.

Височные участки осуществляют обработку слуховых импульсов, преобразуя их в звуковой образ. Имеют важное значение в обеспечении речевых коммуникативных навыков. Непосредственно в данном отделе происходит распознавание услышанной информации, выбор языковых единиц для смысловой выраженности.

На сегодняшний день подтверждено, что возникновение сложностей с обонянием у больного преклонного возраста сигнализирует о формирующемся заболевании Альцгеймера.

Незначительный участок внутри височной доли (), осуществляет контроль долговременной памяти. Непосредственно височная часть накапливает воспоминания. Доминантный отдел взаимодействует с вербальной памятью, недоминантный способствует зрительному запоминанию образов.

Одновременное повреждение двух долей ведет к безмятежному состоянию, потере возможности идентификации внешних образов и повышенной сексуальности.

Островок

Островок (закрытая долька) расположен в глуби боковой борозды. От смежных отделов островок отделяется круговой бороздой. Верхний участок закрытой дольки разделяется на 2 части. Здесь проецируется вкусовой анализатор.

Формирующая дно латеральной борозды, закрытая долька является выступом, верхняя часть которого направлена наружу. Островок отделяется круговой бороздой от близлежащих долей, которые формируют покрышку.

Верхний отдел закрытой дольки подразделяется на 2 части. В первой локализуется прецентральная борозда, а находящаяся посреди них расположена передняя центральная извилина.

Борозды и извилины

Являют собой впадины и находящиеся посреди них складки, которые локализуются на поверхности мозговых полушарий. Борозды способствуют увеличению коры полушарий, не увеличивая объем черепной коробки.

Значимость данных участков заключается в том, что две трети всей коры располагаются в глуби борозд. Бытуют мнение, что полушария развиваются неодинаково в разных отделах, в результате этого напряжение будет также неравномерным в конкретных участках. Это может привести к формированию складок либо извилин. Другие ученые полагают, что большое значение имеет первоначальное развитие борозд.

Анатомическая структура рассматриваемого органа отличается многообразием функций.

Каждый отдел данного органа обладает специфическим предназначением, являясь своеобразным уровнем воздействия.

Благодаря им осуществляется все функционирование головного мозга. Нарушения в работе определенной зоны способно привести к сбоям в деятельности всего мозга.

Зона обработки импульсов

Данный участок способствует обработке нервных сигналов, поступающих через зрительные рецепторы, обоняние, осязание. Большинство рефлексов, взаимосвязанных с моторикой, будут обеспечены пирамидальными клетками. Зона, обеспечивающая обработку мышечных данных, характеризуется слаженной взаимосвязью всех слоев органа, что имеет ключевое значение на этапе соответствующего обрабатывания нервных сигналов.

Если кора мозга поражена на этом участке, то могут произойти нарушения в слаженном функционировании функций и действий по восприятию, неразрывно взаимосвязанных с моторикой. Внешне расстройства в двигательной части проявляются во время непроизвольной двигательной активности, судорогах, тяжелых проявлениях, которые ведут к параличу.

Зона сенсорного восприятия

Данная область отвечает за обработку импульсов, поступающих в мозг. По своей структуре она представляет собой систему взаимодействия анализаторов для установления взаимосвязи со стимулятором. Специалисты выделяют 3 отдела, отвечающих за восприятие импульсов. К ним относят затылочную, обеспечивающая обрабатывание зрительных образов; височную, которая связана со слухом; зону гиппокампа. Часть, которая несет ответственность за обработку данных стимуляторов вкуса, расположены рядом с теменем. Здесь располагаются центры, которые отвечают за прием и обработку тактильных импульсов.

Сенсорная способность непосредственно зависит от количества нейронных связей на этом участке. Примерно данные отделы занимают до пятой части от всего размера коры. Повреждение данного участка провоцирует ненадлежащее восприятие, что не позволит продуцировать встречный импульс, который был бы адекватен раздражителю. Например, нарушение в функционировании слуховой зоны не во всех случаях вызывает глухоту, однако способно спровоцировать некоторые эффекты, искажающие нормальное восприятие данных.

Ассоциативная зона

Этот отдел способствует контактированию между импульсами, принимаемыми нейронными связями в сенсорном отделе, и моторикой, которая представляет собой встречный сигнал. Эта часть формирует осмысленные поведенческие рефлексы, а также принимает участие в их осуществлении. По месту расположения выделяются передние зоны, располагающиеся в лобных частях, и задние, занявшие промежуточное положение посреди висков, теменем и затылочным участком.

Для индивида свойственны сильно развитые задние ассоциативные зоны. Данные центры обладают особым предназначением, гарантируя обрабатывание речевых импульсов.

Патологические изменения в работе переднего ассоциативного участка ведет к сбоям в проведении анализа, прогнозирования, на основе пережитых ранее ощущений.

Расстройства в функционировании заднеассоциативного участка усложняет пространственную ориентацию, делает медленнее абстрактные мыслительные процессы, конструирование и идентификацию сложных зрительных образов.

Кора головного мозга ответственна за работу головного мозга. Подобное вызвало изменения в анатомическом строении самого мозга, так как его работа существенно усложнилась. Сверху определенных участков, взаимосвязанных с органами восприятия и двигательным аппаратом, образовались отделы, которые обладают ассоциативными волокнами. Они необходимы для сложной обработки попадающих внутрь мозга данных. Вследствие формирования данного органа начинается новая стадия, где ее значимость существенно возрастает. Данный отдел считается органом, который выражает индивидуальные особенности человека и его сознательную деятельность.

Человека - это поверхностный слой, который покрывает полушарие головного мозга и преимущественно образован вертикально нервными, ориентированными клетками (так называемыми нейронами), а также их отростками и эфферентными (центробежными), афферентными пучками (центростремительными) и нервными волокнами.

Кроме этого в основу состава коры помимо этого, входят клетки, а также нейро-глии.

Очень значительной особенностью структуры является горизонтальная плотная слоистость, которая прежде всего обусловлена всем упорядоченным расположением каждого тела нервных клеток и волокон. Выделяют 6 основных слоев, которые в основном отличаются по собственной ширине, общей плотности его месторасположения, размерам и форме всех составляющих внешних нейронов.

Преимущественно, именно из-за вертикальной своей ориентации отростков, этих пучков всех различных нервных волокон, также как и тел нейронов, которые имеют вертикальную исчерченность. А для полноценной функциональной организации коры головного мозга человека и большое значение здесь имеет колонкообразное, вертикальное местоположение абсолютно всех внутренних нервных клеток на поверхности зоны коры головного мозга.

Основным видом всех основных нервных клеток, которые входят в состав головной коры мозга считаются специальные пирамидные клетки. Тело данных клеток напоминает обычный конус, с высоты которого начинает отходить один длинный и толстый, апикальный дендрит. С основания тела данной пирамидной клетки также отходят аксон и менее длинные базальные дендриты, направляющийся в полноценное белое вещество, которое расположено непосредственно под корой головного мозга, либо ветвящийся в области коры.

Все дендриты клеток пирамиды, на себе несут достаточно большое количество шипиков, выростов, которые принимают максимально активное участие в полноценной формировании синаптических контактов при окончании афферентных волокон, которые приходят в кору головного мозга из других подкорковых образований и отделов коры. Аксоны этих клеток способны образовывать эфферентные основные пути, которые идут непосредственно из К.Г.М. Размеры всех пирамидных клеток могут варьироваться от 5 и до 150 мк (150-это гигантские клетки имени Беца). Кроме пирамидных нейронов К.Г.М. в состав входят некоторые веретенообразные и звездчатые типы интернейронов, которые участвуют в приеме поступаемых афферентных сигналов, а также формировании межнейронных функциональных связей.

Особенности коры головного мозга

Исходя из различных данных филогенеза, кора головного мозга подразделяется на древнюю (палеокортекс), старую (архикор-текс) и новую (неокортекс). В филогенезе К.Г.М. происходит относительное повсеместное увеличение территории новой поверхности коры при незначительным уменьшением площади старой и древней.

Функционально, зоны коры головного мозга делят на 3 вида: ассоциативные, моторные и сенсорные. Кроме этого, кора головного мозга также отвечает за соответствующие области.

За что отвечает кора головного мозга

Кроме этого, важно отметить, что вся кора головного мозга помимо всего вышесказанного отвечает за все . В составе зон коры головного мозга - это разнообразные по своему строению нейроны, среди которых звездчатые, малые и большие пирамидные, корзинчатые, веретенообразные и другие. В функциональном соотношении все основные нейроны подразделяются на следующие виды:

  1. Вставочные нейроны (веретенообразные, малые пирамидные и прочие). Вставочные нейроны имеют и подразделы и могут быть как тормозными, так и возбуждающими (малые и большие корзинчатые нейроны, нейроны, имеющие кистеобразные нейроны и канделяброобразные аксоны)
  2. Афферентные (это так называемые звездчатые клетки) - к которым поступают импульсы со всех специфических путей, а также возникают разнообразные специфические ощущения. Именно эти клетки передают импульсы непосредственно к эфферентным и вставочным нейронам. Группы полисенсорных нейронов соответственно получают различные импульсы от зрительных бугров ассоциативных ядер
  3. Эфферентные нейроны (их называют большими пирамидными клетками) - импульсы от этих клеток идут на так называемую периферию, где обеспечивают определенный род деятельности

Нейроны, а также отростки на поверхности коры головного мозга также расположены шестью слоями. Нейроны, которые выполняют одни и те же рефлекторные функции, расположены строго один выше другого. Таким образом, основной структурной единицей поверхности коры головного мозга считаются отдельные колонки. И наиболее выраженной связь между третьим, четвертым и пятым этапом слоев К.Г.М.

Колодки коры головного мозга

Доказательством наличия колонок в коре головного мозга также можно считать следующие факторы:
При введении разнообразных микроэлектродов в К.Г.М. строго перпендикулярно записывается (регистрируется) импульс при полноценной воздействии аналогичной рефлекторной реакции. И при введении электродов в строго горизонтальном направлении то регистрируются характерные импульсы для разнообразных рефлекторных реакций. В основном, диаметр одной колонки составляет 500 мкм. Все соседние колонки плотно связаны во всем функциональном отношении, а также часто расположены друг с другом в тесных реципрокных взаимоотношениях (одни - тормозят, другие - возбуждают).

При действии раздражителей на ответную реакцию также вовлекаются множество колонок и происходит совершенный синтез и анализ раздражений - это принцип экранирования.

Поскольку кора головного мозга растет в периферии, тогда все поверхностные слои коры головного мозга имеют полное отношение и ко всем сигнальным системам. Эти поверхностные слои состоят с очень большого количества нервных клеток (порядка 15 млрд) и вместе с их отростками, с помощью которых и создается возможность таких неограниченных замыкательных функций, широких ассоциаций - это составляет сущность всей деятельности сигнальной второй системы. Но при всем этом, вторая с.с. функционирует с другими системами.

Внимание!

КОРА ГОЛОВНОГО МОЗГА (cortex encephali ) - все поверхности полушарий большого мозга, покрытые плащом (pallium), образованным серым веществом. Вместе с другими отделами ц. н. с. кора участвует в регуляции и координации всех функций организма, играет исключительно важную роль в психической, или высшей нервной деятельности (см.).

В соответствии с этапами эволюционного развития ц. н. с. кору делят на старую и новую. Старая кора (archicortex - собственно старая кора и paleocortex - древняя кора) - филогенетически более древнее образование, чем новая кора (neocortex), появившаяся в процессе развития больших полушарий головного мозга (см. Архитектоника коры головного мозга , Головной мозг).

Морфологически К. г. м. образована нервными клетками (см.), их отростками и нейроглией (см.), имеющей опорно-трофическую функцию. У приматов и человека в коре насчитывается ок. 10 млрд. нейроцитов (нейронов). В зависимости от формы различают пирамидальные и звездчатые нейроциты, которые характеризуются большим разнообразием. Аксоны пирамидальных нейроцитов направляются в подкорковое белое вещество, а их апикальные дендриты - в наружный слой коры. Звездчатые нейроциты имеют только внутрикорковые аксоны. Дендриты и аксоны звездчатых нейроцитов обильно ветвятся вблизи клеточных тел; часть аксонов подходит к наружному слою коры, где они, следуя горизонтально, образуют густое сплетение с вершинами апикальных дендритов пирамидальных нейроцитов. Вдоль поверхности дендритов имеются почковидные выросты, или шипики, которые представляют собой область аксодендритных синапсов (см.). Мембрана тела клетки является областью аксосоматических синапсов. В каждой области коры имеется множество входных (афферентных) и выходных (эфферентных) волокон. Эфферентные волокна идут к другим областям К. г. м., к подкорковым образованиям или к двигательным центрам спинного мозга (см.). Афферентные волокна входят в кору от клеток подкорковых структур.

Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, слабо отдифференцированного от нижележащих подкорковых структур. Собственно старая кора состоит из 2-3 слоев.

Новая кора имеет более сложное строение и занимает (у человека) ок. 96% всей поверхности К. г. м. Поэтому, когда говорят о К. г. м., то обычно подразумевают новую кору, к-рую подразделяют на лобную, височную, затылочную и теменную доли. Эти доли делят на области и цитоархитектонические поля (см. Архитектоника коры головного мозга).

Толщина коры у приматов и человека варьирует от 1,5 мм (на поверхности извилин) до 3-5 мм (в глубине борозд). На срезах, окрашенных по Нисслю, видно слоистое строение коры, к-рое зависит от группировки нейроцитов на разных ее уровнях (слоях). В коре принято различать 6 слоев. Первый слой беден клеточными телами; второй и третий - содержат малые, средние и большие пирамидальные нейроциты; четвертый слой - зона звездчатых нейроцитов; пятый слой содержит гигантопирамидальные нейроциты (гигантские пирамидные клетки); шестой слой характеризуется наличием мультиформных нейроцитов. Однако шестислойная организация коры не является абсолютной, т. к. в действительности во многих отделах коры имеет место постепенный и равномерный переход между слоями. Клетки всех слоев, расположенные на одном перпендикуляре по отношению к поверхности коры, тесно связаны между собой и с подкорковыми образованиями. Такой комплекс называют колонкой клеток. Каждая такая колонка отвечает за восприятие преимущественно одного вида чувствительности. Напр., одна из колонок коркового представительства зрительного анализатора воспринимает движение предмета в горизонтальной плоскости, соседняя - в вертикальной и т. п.

Аналогичные комплексы клеток новой коры имеют горизонтальную ориентацию. Предполагают, что, напр., мелкоклеточные слон II и IV состоят в основном из воспринимающих клеток и являются «входами» в кору, крупноклеточный слой V - это «выход» из коры в подкорковые структуры, а среднеклеточный слой III - ассоциативный, связывает между собой различные зоны коры.

Т. о., можно выделить несколько типов прямых и обратных связей между клеточными элементами коры и подкорковых образований: вертикальные пучки волокон, несущие информацию из подкорковых структур к коре и обратно; внутрикортикальные (горизонтальные) пучки ассоциативных волокон, проходящие на различных уровнях коры и белого вещества.

Вариабельность и своеобразие строения нейроцитов свидетельствуют о чрезвычайной сложности аппаратов внутрикорковых переключений и способов соединений между нейроцитами. Такую особенность строения К. г. м. следует рассматривать как морфол, эквивалент ее чрезвычайной реактивности и функц, пластичности, обеспечивающих ей высшие нервные функции.

Увеличение массы корковой ткани происходило в ограниченном пространстве черепа, поэтому поверхность коры, гладкая у низших млекопитающих, у высших млекопитающих и человека преобразовалась в извилины и борозды (рис. 1). Именно с развитием коры уже в прошлом столетии ученые связывали такие стороны деятельности мозга, как память (см.), интеллект, сознание (см.), мышление (см.) и т. п.

1870 год И. П. Павлов определил как год, «с которого начинается научная плодотворная работа по изучению больших полушарий». В этом году Фрич и Гитциг (G. Fritsch, E. Hitzig, 1870) показали, что электрическое раздражение определенных участков переднего отдела К. г. м. собак вызывает сокращение определенных групп скелетной мускулатуры. Многие ученые полагали, что при раздражении К. г. м. активируются «центры» произвольных движений и моторной памяти. Однако еще Ч. Шеррингтон предпочитал избегать функц, интерпретации этого явления и ограничивался лишь утверждением, что область коры, раздражение к-рой вызывает сокращение мышечных групп, интимно связана со спинным мозгом.

Направления экспериментальных исследований К. г. м. конца прошлого столетия почти всегда были связаны с проблемами клин, неврологии. На этой основе были начаты опыты с частичной или полной декортикацией головного мозга (см.). Первым полную декортикацию у собаки произвел Гольтц (F. L. Goltz, 1892). Декортицированная собака оказалась жизнеспособной, но у нее были резко нарушены многие важнейшие функции - зрение, слух, ориентация в пространстве, координация движений и др. До открытия И. П. Павловым феномена условного рефлекса (см.) интерпретация опытов как с полными, так и частичными экстирпациями коры страдала отсутствием объективного критерия их оценки. Введение условнорефлекторного метода в практику эксперимента с экстирпациями открыло новую эру в исследованиях структурно-функциональной организации К. г. м.

Одновременно с открытием условного рефлекса возник вопрос и о его материальной структуре. Поскольку первые попытки выработать условный рефлекс у декортицированных собак не удались, И. П. Павлов пришел к выводу, что К. г. м. является «органом» условных рефлексов. Однако дальнейшими исследованиями была показана возможность выработки условных рефлексов у декортицированных животных. Было установлено, что условные рефлексы не нарушаются при вертикальных перерезках различных областей К. г. м. и разобщении их с подкорковыми образованиями. Эти факты наряду с электрофизиологическими данными дали повод рассматривать условный рефлекс как результат становления многоканальной связи между различными корковыми и подкорковыми структурами. Недостатки метода экстирпации для изучения значения К. г. м. в организации поведения побудили к разработке методик обратимого, функционального, выключения коры. Буреш и Бурешова (J. Bures, О. Buresova, 1962) применили феномен так наз. распространяющейся депрессии путем аппликации к тому или иному участку коры хлористого калия или других раздражителей. Поскольку депрессия не распространяется через борозды, этот метод можно использовать только на животных с гладкой поверхностью К. г. м. (крысы, мыши).

Другой путь функц, выключения К. г. м.- ее охлаждение. Метод, разработанный Н. Ю. Беленковым с сотр. (1969), состоит в том, что в соответствии с формой поверхности корковых областей, намечаемых к выключению, изготавливаются капсулы, которые вживляются над твердой мозговой оболочкой; во время эксперимента через капсулу пропускается охлажденная жидкость, вследствие чего температура коркового вещества под капсулой снижается до 22-20°. Отведение биопотенциалов с помощью микроэлектродов показывает, что при такой температуре импульсная активность нейронов прекращается. Метод холодовой декортикации, используемый в хрон, опытах на животных, продемонстрировал эффект экстренного отключения новой коры. Оказалось, что такое отключение прекращает осуществление ранее выработанных условных рефлексов. Т. о., было показано, что К. г. м. представляет собой необходимую структуру для проявления условного рефлекса в интактном мозге. Следовательно, наблюдаемые факты выработки условных рефлексов у хирургически декортицированных животных являются результатом компенсаторных перестроек, происходящих в интервале времени от момента операции до начала исследования животного в хрон, эксперименте. Компенсаторные явления имеют место и в случае функц, выключений новой коры. Так же, как и холодовое выключение, острое выключение новой коры у крыс с помощью распространяющейся депрессии резко нарушает условно-рефлекторную деятельность.

Сравнительная оценка эффектов полной и частичной декортикации у различных видов животных показала, что обезьяны переносят эти операции тяжелее, чем кошки и собаки. Степень нарушения функций при экстирпации одних и тех же зон коры различна у животных, стоящих на разных ступенях эволюционного развития. Напр., удаление височных областей у кошек и собак меньше нарушает функцию слуха, чем у обезьян. Точно так же зрение после удаления затылочной доли коры страдает у обезьян в большей степени, чем у кошек и собак. На основании этих данных возникло представление о кортиколизации функций в процессе эволюции ц. н. с., согласно к-рому филогенетически более ранние звенья нервной системы переходят на более низкий уровень иерархии. При этом К. г. м. пластически перестраивает функционирование этих, филогенетически более старых, структур в соответствии с влиянием окружающей среды.

Корковые проекции афферентных систем К. г. м. представляют собой специализированные конечные станции путей от органов чувств. От К. г. м. к мотонейронам спинного мозга в составе пирамидного тракта идут эфферентные пути. Они берут начало преимущественно от двигательной области коры, к-рая у приматов и человека представлена передней центральной извилиной, расположенной кпереди от центральной борозды. Кзади от центральной борозды расположена соматосенсорная область К. г. м.- задняя центральная извилина. Отдельные участки скелетной мускулатуры корти-колизированы в различной степени. Наименее дифференцированно в передней центральной извилине представлены нижние конечности и туловище, большую площадь занимает представительство мышц кисти. Еще более обширная область соответствует мускулатуре лица, языка и гортани. В задней центральной извилине в таком же соотношении, как и в передней центральной извилине, представлены афферентные проекции частей тела. Можно сказать, что организм как бы спроецирован в эти извилины в виде абстрактного «гомункулюса», который характеризуется чрезвычайным перевесом в пользу передних сегментов тела (рис. 2 и 3).

Помимо этого, в состав коры входят ассоциативные, или неспецифические, области, получающие информацию от рецепторов, воспринимающих раздражения различной модальности, и от всех проекционных зон. Филогенетическое развитие К. г. м. характеризуется прежде всего ростом ассоциативных зон (рис. 4) и обособлением их от проекционных. У низших млекопитающих (грызунов) почти вся кора состоит из одних только проекционных зон, выполняющих одновременно и ассоциативные функции. У человека проекционные зоны занимают лишь небольшую часть коры; все остальное отведено под ассоциативные зоны. Предполагают, что ассоциативные зоны играют особо важную роль в осуществлении сложных форм в. н. д.

У приматов и человека наибольшего развития достигает лобная (префронтальная) область. Это филогенетически самая молодая структура, имеющая непосредственное отношение к самым высшим психическим функциям. Однако попытки спроецировать эти функции на отдельные участки лобной коры не имеют успеха. Очевидно, любая часть лобной коры может включаться в осуществление любой из функций. Эффекты, наблюдаемые при разрушении различных участков этой области, относительно кратковременны или часто совсем отсутствуют (см. Лобэктомия).

Приуроченность отдельных структур К. г. м. к определенным функциям, рассматриваемая как проблема локализации функций, остается до сих пор одной из самых трудных проблем неврологии. Отмечая, что у животных после удаления классических проекционных зон (слуховых, зрительных) условные рефлексы на соответствующие раздражители частично сохраняются, И. П. Павлов высказал гипотезу о существовании «ядра» анализатора и его элементов, «рассеянных» по всей К. г. м. С помощью микроэлектродные методы исследования (см.) удалось зарегистрировать в различных областях К. г. м. активность специфических нейроцитов, отвечающих на стимулы определенной сенсорной модальности. Поверхностное отведение биоэлектрических потенциалов выявляет распределение первичных вызванных потенциалов на значительных площадях К. г. м.- за пределами соответствующих проекционных зон и цитоархитектонических полей. Эти факты наряду с поли-функциональностью нарушений при удалении любой сенсорной области или ее обратимом выключении указывают на множественное представительство функций в К. г. м. Двигательные функции также распределены на значительных площадях К. г. м. Так, нейроциты, отростки которых формируют пирамидный тракт, расположены не только в моторных областях, но и за их пределами. Помимо сенсорных и моторных клеток, в К. г. м. имеются еще и промежуточные клетки, или интернейроциты, составляющие основную массу К. г. м. и сосредоточенные гл. обр. в ассоциативных областях. На интернейроциты конвергируют разномодальные возбуждения.

Экспериментальные данные указывают, т. о., на относительность локализации функций в К. г. м., на отсутствие корковых «центров», зарезервированных под ту или иную функцию. Наименее дифференцированными в функц, отношении являются ассоциативные области, обладающие особо выраженными свойствами пластичности и взаимозамещаемости. Из этого, однако, не вытекает, что ассоциативные области эквипотенциальны. Принцип эквипотенциальности коры (равнозначности ее структур), высказанный Лешли (К. S. Lashley) в 1933 г. на основании результатов экстирпаций мало-дифференцированной коры крысы, в целом не может распространяться на организацию кортикальной активности у высших животных и человека. Принципу эквипотенциальности И. П. Павлов противопоставил концепцию о динамической локализации функций в К. г. м.

Решение проблемы структурно-функциональной организации К. г. м. во многом затрудняется отождествлением локализации симптомов экстирпаций и стимуляций определенных корковых зон с локализацией функций К. г. м. Этот вопрос касается уже методологических аспектов нейрофизиол, эксперимента, т. к. с диалектической точки зрения любая структурно-функциональная единица в том виде, в каком она выступает в каждом данном исследовании, представляет собой фрагмент, одну из сторон существования целого, продукт интеграции структур и связей мозга. Напр., положение о том, что функция моторной речи «локализуется» в нижней лобной извилине левого полушария, основано на результатах повреждения этой структуры. В то же время электрическая стимуляция этого «центра» речи никогда не вызывает акта артикуляции. Оказывается, однако, что произнесение целых фраз можно вызвать стимуляцией рострального таламуса, посылающего афферентные импульсы в левое полушарие. Фразы, вызванные такой стимуляцией, не имеют ничего общего с произвольной речью и не адекватны ситуации. Этот высоко-интегрированный эффект стимуляции свидетельствует о том, что восходящие афферентные импульсы трансформируются в нейрональный код, эффективный для высшего координационного механизма моторной речи. Точно так же сложнокоординированные движения, обусловленные раздражением моторной области коры, организуются не теми структурами, которые непосредственно подвергаются раздражению, а соседними или спинальными и экстрапирамидными системами, возбуждаемыми по нисходящим путям. Эти данные показывают, что между корой и подкорковыми образованиями имеется тесная связь. Поэтому нельзя противопоставлять кортикальные механизмы работе подкорковых структур, а надо рассматривать конкретные случаи их взаимодействия.

При электрической стимуляции отдельных корковых областей изменяется деятельность сердечно-сосудистой системы, дыхательного аппарата, жел.-киш. тракта и других висцеральных систем. Влияния К. г. м. на внутренние органы К. М. Быков обосновывал также возможностью образования висцеральных условных рефлексов, что наряду с вегетативными сдвигами при различных эмоциях было положено им в основу концепции существования кортико-висцеральных отношений. Проблема кортико-висцеральных отношений решается в плане изучения модуляции корой деятельности подкорковых структур, имеющих непосредственное отношение к регуляции внутренней среды организма.

Существенную роль играют связи К. г. м. с гипоталамусом (см.).

Уровень активности К. г. м. в основном определяется восходящими влияниями от ретикулярной формации (см.) ствола мозга, к-рую контролируют кортико-фугальные влияния. Эффект последних имеет динамический характер и является следствием текущего афферентного синтеза (см.). Исследования с помощью электроэнцефалографии (см.), в частности кортикографии (т. е. отведения биопотенциалов непосредственно от К. г. м.), казалось бы подтвердили гипотезу о замыкании временной связи между очагами возбуждений, возникающих в кортикальных проекциях сигнального и безусловного раздражителей в процессе образования условного рефлекса. Однако оказалось, что по мере упрочения поведенческих проявлений условного рефлекса электрографические признаки условной связи исчезают. Этот кризис методики электроэнцефалографии в познании механизма условного рефлекса был преодолен в исследованиях М. Н. Ливанова с сотр. (1972). Ими показано, что распространение возбуждения по К. г. м. и проявление условного рефлекса зависит от уровня дистантной синхронизации биопотенциалов, отводимых от пространственно удаленных пунктов К. г. м. Повышение уровня пространственной синхронизации наблюдается при умственном напряжении (рис. 5). В этом состоянии участки синхронизации не сконцентрированы в определенных зонах коры, а распределены по всей ее площади. Корреляционные отношения охватывают пункты всей лобной коры, но вместе с тем повышенная синхронность регистрируется и в предцентральной извилине, в теменной области и в других участках К. г. м.

Головной мозг состоит из двух симметричных частей (полушарий), связанных между собой комиссурами, состоящими из нервных волокон. Оба полушария головного мозга объединяются самой большой комиссурой - мозолистым телом (см.). Его волокна связывают идентичные пункты К. г. м. Мозолистое тело обеспечивает единство функционирования обоих полушарий. При его перерезке каждое полушарие начинает функционировать независимо одно от другого.

В процессе эволюции мозг человека приобрел свойство латерализации, или асимметрии (см.). Каждое его полушарие специализировалось для выполнения определенных функций. У большинства людей доминирующим является левое полушарие, обеспечивающее функцию речи и контроль за действием правой руки. Правое полушарие специализировано для восприятия формы и пространства. Вместе с тем функц, дифференциация полушарий не абсолютна. Тем не менее обширные повреждения левой височной доли сопровождаются, как правило, сенсорными и моторными нарушениями речи. Очевидно, что в основе латерализации лежат врожденные механизмы. Однако потенциальные возможности правого полушария в организации функции речи способны проявляться при повреждении левого полушария у новорожденных.

Имеются основания рассматривать латерализацию как адаптивный механизм, развившийся вследствие усложнения функций головного мозга на высшем этапе его развития. Латерализация препятствует интерференции различных интегративных механизмов во времени. Возможно, что кортикальная специализация противодействует несовместимости различных функциональных систем (см.), облегчает принятие решения о цели и способе действия. Интегративная деятельность мозга не исчерпывается, т. о., внешней (суммативной) целостностью, понимаемой как взаимодействие активностей независимых элементов (будь то нейроциты или целые образования мозга). На примере развития латерализации можно видеть, как сама эта целостная, интегративная деятельность мозга становится предпосылкой дифференциации свойств ее отдельных элементов, наделяет их функц, спецификой. Следовательно, функц, вклад каждой отдельной структуры К. г. м. в принципе нельзя оценить в отрыве от динамики интегративных свойств целостного мозга.

Патология

Кора головного мозга редко поражается изолированно. Признаки ее поражения в большей или меньшей степени обычно сопутствуют патологии головного мозга (см.) и входят в состав ее симптомов. Обычно патол, процессами поражается не только К. г. м., но и белое вещество полушарий. Поэтому под патологией К. г. м. обычно понимают ее преимущественное поражение (диффузное или локальное, без строгой границы между этими понятиями). Наиболее обширное и интенсивное поражение К. г. м. сопровождается исчезновением психической активности, комплексом как диффузных, так и локальных симптомов (см. Апаллический синдром). Наряду с неврол, симптомами поражения двигательной и чувствительной сферы, симптомами поражения различных анализаторов у детей является задержка развития речи и даже полная невозможность становления психики. В К. г. м. при этом наблюдаются изменения цитоархитектоники в виде нарушения слоистости, вплоть до полного ее исчезновения, очаги выпадения нейроцитов с замещением их разрастаниями глии, гетеротопия нейроцитов, патология синаптического аппарата и другие патоморфол, изменения. Поражения К. г. м. наблюдаются при различных врожденных аномалиях мозга в виде анэнцефалии, микрогирии, микроцефалии, при различных формах олигофрении (см.), а также при самых различных инфекциях и интоксикациях с поражением нервной системы, при черепно-мозговых травмах, при наследственных и дегенеративных заболеваниях мозга, нарушениях мозгового кровообращения и т. д.

Изучение ЭЭГ при локализации патол, очага в К. г. м. чаще выявляет преобладание очаговых медленных волн, которые рассматриваются как коррелят охранительного торможения (У. Уолтер, 1966). Слабая выраженность медленных волн в области патол, очага является полезным диагностическим признаком в предоперационной оценке состояния больных. Как показали исследования Н. П. Бехтеревой (1974), проведенные совместно с нейрохирургами, отсутствие медленных волн в области патол, очага является неблагоприятным прогностическим признаком последствий хирургического вмешательства. Для оценки патол, состояния К. г. м. используется также тест на взаимодействие ЭЭГ в зоне очагового поражения с вызванной активностью в ответ на положительные и дифференцировочные условные раздражители. Биоэлектрическим эффектом такого взаимодействия может быть как усиление очаговых медленных волн, так и ослабление их выраженности или усиление частых колебаний типа заостренных бета-волн.

Библиография: Анохин П. К. Биология и нейрофизиология условного рефлекса, М., 1968, библиогр.; Беленков Н. Ю. Фактор структурной интеграции в деятельности мозга, Усп. физиол, наук, т. 6, в. 1, с. 3, 1975, библиогр.; Бехтерева Н. П. Нейрофизиологические аспекты психической деятельности человека, Л., 1974; Грей Уолтер, Живой мозг, пер. с англ., М., 1966; Ливанов М. Н. Пространственная организация процессов головного мозга, М., 1972, библиогр.; Лурия А. Р. Высшие корковые функции человека и их нарушения при локальных поражениях мозга, М., 1969, библиогр.; Павлов И. П. Полное собрание сочинений, т. 3-4, М.-Л., 1951; Пенфильд В. и Робертс Л. Речь и мозговые механизмы, пер. с англ., Л., 1964, библиогр.; Поляков Г. И. Основы систематики нейронов новой коры большого мозга человека, М., 1973, библиогр.; Цитоархитектоника коры большого мозга человека, под ред. С. А. Саркисова и др., с. 187, 203, М., 1949; Шаде Дж. и Форд Д. Основы неврологии, пер. с англ., с. 284, М., 1976; M a s t e г t о n R. B. a. B e r k 1 e y M. A. Brain function, Ann. Rev. Psychol., у. 25, p. 277, 1974, bibliogr.; S h о 1 1 D. A. The organization of cerebral cortex, L.-N. Y., 1956, bibliogr.; Sperry R. W. Hemisphere deconnection and unity in conscious awareness, Amer. Psychol., v. 23, p. 723, 1968.

H. Ю. Беленков.

глиальные клетки ; оно расположено в некоторых отделах глубинных мозговых структур, из этого вещества сформирована кора больших полушарий (а также мозжечка).

Каждое полушарие разделяется на пять долей, четыре из которых (лобная, теменная, затылочная и височная) примыкают к соответствующим костям черепного свода, а одна (островковая) находится в глубине, в ямке, которая разделяет лобную и височную доли.

Кора большого мозга имеет толщину в 1,5–4,5 мм, ее площадь увеличивается за счет присутствия борозд; она связана с другими отделами ЦНС, благодаря импульсам, которые проводят нейроны.

Полушария достигают примерно 80% от общей массы головного мозга. Они осуществляют регуляцию высших психических функций, тогда как мозговой ствол – низшие, которые связаны с деятельностью внутренних органов.

Три основные области выделяют на полушарной поверхности :

  • выпуклая верхнелатеральная, которая примыкает к внутренней поверхности черепного свода;
  • нижняя, с располагающимися передними и средними отделами на внутренней поверхности черепного основания и задними в области намета мозжечка;
  • медиальная расположена у продольной щели мозга.

Особенности устройства и деятельности

Кора большого мозга подразделяется на 4 вида:

  • древняя – занимает чуть более 0,5% всей поверхности полушарий;
  • старая – 2,2%;
  • новая – более 95%;
  • средняя – примерно 1,5%.

Филогенетически древняя кора большого мозга, представленная группами крупных нейронов, оттесняется новой к основанию полушарий, становясь узкой полоской. А старая, состоящая из трех клеточных слоев, смещается ближе к середине. Главная область старой коры – гиппокамп, являющийся центральным отделом лимбической системы . Средняя (промежуточная) кора представляет собой образование переходного типа, так как трансформация старых структур в новые осуществляется постепенно.

Кора головного мозга у человека, в отличие от таковой у млекопитающих, также ответственна за согласованную работу внутренних органов. Такое явление, при котором, возрастает роль коры в осуществлении всей функциональной деятельности организма, носит название кортикализация функций.

Одна из особенностей коры – ее электрическая активность, происходящая спонтанно. Нервные клетки, расположенные в этом отделе, обладают определенной ритмической активностью, отражающей биохимические, биофизические процессы. Активность обладает различной амплитудой и частотой (альфа-, бета-, дельта-, тета-ритмы), что зависит от влияния многочисленных факторов (медитации, фазы сна, переживания стресса, наличия судорог, новообразования).

Структура

Кора головного мозга представляет собой многослойное образование: каждый из слоев имеет свой определенный состав нейроцитов, конкретную ориентацию, расположение отростков.

Систематическое положение нейронов в коре носит название «цитоархитектоника», расположенные в определенном порядке волокна – «миелоархитектоника».

Кора больших полушарий головного мозга состоит из цитоархитектонических шесть слоев.

  1. Поверхностный молекулярный, в котором нервных клеток не очень много. Их отростки расположены в нем самом, и они не выходят за пределы.
  2. Наружный зернистый сформирован из пирамидальных и звездчатых нейроцитов. Отростки выходят из этого слоя и идут в последующие.
  3. Пирамидальный состоит из пирамидных клеток. Их аксоны направляются вниз, где оканчиваются или формируют ассоциативные волокна, а дендриты идут вверх, во второй слой.
  4. Внутренний зернистый образован звездчатыми клетками и малыми пирамидными. Дендриты идут в первый слой, боковые отростки разветвляются в пределах своего слоя. Аксоны протягиваются в верхние слои или в белое вещество.
  5. Ганглионарный образован большими пирамидными клетками. Здесь находятся самые крупные нейроциты коры. Дендриты направлены в первый слой или распределены в своем. Аксоны выходят из коры и начинают являться волокнами, связывающими различные отделы и структуры ЦНС между собой.
  6. Мультиформный – состоит из различных клеток. Дендриты идут к молекулярному слою (некоторые только до четвертого или пятого слоев). Аксоны направляются в вышележащие слои или выходят из коры в качестве ассоциативных волокон.

Кора головного мозга разделяется на области – так называемая горизонтальная организация . Всего их насчитывается 11, и они включают в себя 52 поля, каждое из которых имеет свой порядковый номер.

Вертикальная организация

Существует и вертикальное разделение – на колонки нейронов. При этом маленькие колонки объединяются в макроколонки, которые называют функциональным модулем. В основе таких систем находятся звездчатые клетки – их аксоны, а также горизонтальные связи их с боковыми аксонами пирамидальных нейроцитов. Все нервные клетки вертикальных колонок реагируют на афферентный импульс одинаково и вместе посылают эфферентный сигнал. Возбуждение в горизонтальном направлении обусловлено деятельностью поперечных волокон, которые следуют от одной колонки к другой.

Впервые обнаружил единицы, которые объединяют нейроны различных слоев по вертикали, в 1943г. Лоренте де Но – с помощью гистологии. Впоследствии это было подтверждено с помощью методов электрофизиологии на животных В. Маунткаслом.

Развитие коры во внутриутробном развитии начинается рано: уже в 8 недель у эмбриона появляется корковая пластина. Вначале дифференцируются нижние слои, а в 6 месяцев у будущего ребенка появляются все поля, которые присутствуют и у взрослого человека. Цитоархитектонические особенности коры к 7 годам полностью формируются, но тела нейроцитов увеличиваются еще до 18. Для образования коры необходимо согласованное перемещение и деление клеток-предшественниц, из которых появляются нейроны. Установлено, что на этот процесс влияет специальный ген.

Горизонтальная организация

Принято разделять зоны коры головного мозга на:

  • ассоциативные;
  • сенсорные (чувствительные);
  • моторные.

Учеными при изучении локализованных участков и их функциональных особенностей применялись разнообразные способы: раздражение химическое или физическое, частичное удаление мозговых участков, выработка условных рефлексов, регистрация биотоков мозга.

Чувствительные

Эти области занимают примерно 20% коры. Поражение таких зон ведет к нарушению чувствительности (снижение зрения, слуха, обоняния и т. п.). Площадь зоны напрямую зависит от количества нервных клеток, которые воспринимают импульс от определенных рецепторов: чем их больше, тем выше сензитивность. Выделяют зоны:

  • соматосенсорную (отвечает за кожную, проприоцептивную, вегетативную чувствительность) – она расположена в теменной доле (постцентральная извилина);
  • зрительную, двухстороннее повреждение которое приводит к полной слепоте, – находится в затылочной доле;
  • слуховую (расположена в височной доле);
  • вкусовую, находящуюся в теменной доле (локализация – постцентральная извилина);
  • обонятельную, двухстороннее нарушение которой приводит к потере обоняния (расположена в гиппокамповой извилине).

Нарушение слуховой зоны не приводит к глухоте, но появляются другие симптомы. Например, невозможность различения коротких звуков, смысла бытовых шумов (шагов, льющейся воды и т. п.) при сохранности различия звуков по высоте, длительности, тембру. Также может происходить амузия, заключающаяся в неспособности узнавать, воспроизводить мелодии, а также различать их между собой. Музыка также может сопровождаться неприятными ощущениями.

Импульсы, идущие по афферентным волокнам с левой стороны тела, воспринимаются правым полушарием, а с правой стороны – левым (повреждение левого полушария вызовет нарушение чувствительности с правой стороны и наоборот). Это связано с тем, что каждая постцентральная извилина связана с противоположной частью тела.

Двигательные

Моторные участки, раздражение которых вызывает движение мускулатуры, располагаются в передней центральной извилине лобной доли. Двигательные зоны сообщаются с сенсорными.

Двигательные пути в продолговатом мозге (и частично в спинном) образуют перекрест с переходом на противоположную сторону . Это приводит к тому, что раздражение, которое возникает в левом полушарии, поступает в правую половину туловища, и наоборот. Поэтому поражение участка коры одного из полушарий ведет к нарушению двигательной функции мышц с противоположной стороны туловища.

Моторная и сенсорная области, которые расположены в районе центральной борозды, объединяются в одно образование – сенсомоторную зону.

Неврология и нейропсихология накопили множество сведений о том, как поражение этих областей приводит не только к элементарным двигательным расстройствам (параличам, парезам, треморам), но и к нарушениям произвольных движений и действий с предметами – апраксиям. При их появлении могут нарушаться движения во время письма, происходить расстройства пространственных представлений, появляться бесконтрольные шаблонные движения.

Ассоциативные

Эти зоны ответственны за связывание поступающей сенсорной информации с той, которая была получена ранее и хранится в памяти. Кроме того, они позволяют сравнивать между собой информацию, которая идет от различных рецепторов. Ответная реакция на сигнал формируется в ассоциативной зоне и передается в зону двигательную. Таким образом, каждая ассоциативная область отвечает за процессы памяти, научения и мышления . Крупные ассоциативные зоны находятся рядом с соответствующими функционально сенсорными зонами. К примеру, какая-либо ассоциативная зрительная функция контролируется зрительной ассоциативной зоной, которая расположена рядом с сенсорным зрительным участком.

Установление закономерностей работы мозга, анализ его локальных нарушений и проверку его активности осуществляет наука нейропсихология, которая находится на стыке нейробиологии, психологии, психиатрии и информатики.

Особенности локализации по полям

Кора большого мозга пластична, что сказывается на переходе функций одного отдела, если произошло его нарушение, в другой. Это обусловлено тем, что анализаторы в коре имеют ядро, где происходит высшая деятельность, и периферию, которая отвечает за процессы анализа и синтеза в примитивном виде. Между ядрами анализаторов находятся элементы, которые принадлежат разным анализаторам. Если повреждение касается ядра, за его деятельность начинают отвечать периферические составляющие.

Таким образом, локализация функций, которыми обладает кора головного мозга, – понятие относительное, так как определенных границ не существует. Тем не менее, цитоархитектоника предполагает наличие 52 полей, которые сообщаются друг с другом проводящими путями:

  • ассоциативными (этот тип нервных волокон отвечает за деятельность коры в области одного полушария);
  • комиссуральными (связывают симметричные области обоих полушарий);
  • проекционными (способствуют сообщению коры, подкорковых структур с другими органами).

Таблица 1

Соответствующие поля

Двигательная

Чувствительная

Зрительная

Обонятельная

Вкусовая

Речедвигательная, которая включает центры:

Вернике, позволяющий воспринимать устную речь

Брока – отвечает за движение языковых мышц; поражение грозит полной потерей речи

Восприятия речи на письме

Итак, строение коры головного мозга предполагает рассмотрение ее в горизонтальной и вертикальной ориентации. В зависимости от этого, выделяют вертикальные колонки нейронов и зоны, расположенные в горизонтальной плоскости. Основные функции, которые выполняет кора, сводятся к осуществлению поведения, регуляции мышления, сознания. Кроме того, она обеспечивает взаимодействие организма с внешней средой и принимает участие в контроле работы внутренних органов.

Кора большого мозга представлена равномерным слоем серого вещества толщиною 1,3-4,5 мм, состоящим более чем из 14 млрд. нервных клеток. Благодаря складчатости коры ее поверхность достигает больших размеров - около 2200 см 2 .

Толща коры состоит из шести слоев клеток, которые различают при специальной окраске и исследовании под микроскопом. Клетки слоев различны по форме и размерам. От них в глубь мозга отходят отростки.

Было установлено, что разные участки - поля коры полушарий различаются по строению и функциям. Таких полей (называемых еще зонами, или центрами) выделяют от 50 до 200. Строгих границ между зонами коры большого мозга не существует. Они составляют аппарат, обеспечивающий прием, переработку приходящих сигналов и ответную реакцию на поступившие сигналы.

В задней центральной извилине, позади от центральной борозды, располагается зона кожной и суставно-мышечной чувствительности . Здесь воспринимаются и анализируются сигналы, возникающие при касании к нашему телу, при воздействии на него холода или тепла, болевых воздействиях.


В противоположность этой зоне - в передней центральной извилине, спереди от центральной борозды, расположена двигательная зона . В ней выявлены участки, которые обеспечивают движения нижних конечностей, мышц туловища, рук, головы. При раздражении этой зоны электротоком возникают сокращения соответствующих групп мышц. Ранения или другие повреждения коры двигательной зоны влекут за собой паралич мышц тела.

В височной доле находится слуховая зона . Сюда поступают и здесь анализируются импульсы, возникающие в рецепторах улитки внутреннего уха. Раздражения участков слуховой зоны вызывают ощущения звуков, а при поражении их болезнью утрачивается слух.

Зрительная зона расположена в коре затылочных долей полушарий. При ее раздражении электрическим током во время операций на мозге человек испытывает ощущения вспышек света и темноты. При поражении ее какой-либо болезнью ухудшается и теряется зрение.

Вблизи боковой борозды расположена вкусовая зона , где анализируются и формируются ощущения вкуса на основании сигналов, возникающих в рецепторах языка. Обонятельная зона расположена в так называемом обонятельном мозге, у основания полушарий. При раздражении этих зон во время хирургических операций или при воспалении люди ощущают запах или вкус каких-либо веществ.

Чисто речевой зоны не существует. Она представлена в коре височной доли, нижней лобной извилине слева, участках теменной доли. Их поражения болезнями сопровождаются расстройствами речи.

Первая и вторая сигнальные системы

Неоценима роль коры большого мозга в совершенствовании первой сигнальной системы и развитии второй. Эти понятия разработаны И.П.Павловым. Под сигнальной системой в целом понимают всю совокупность процессов нервной системы, осуществляющих восприятие, переработку информации и ответную реакцию организма. Она связывает организм с внешним миром.

Первая сигнальная система

Первая сигнальная система обусловливает восприятие посредством органов чувств чувственно-конкретных образов. Она является основой для образования условных рефлексов. Эта система существует как у животных, так и у человека.

В высшей нервной деятельности человека развилась надстройка в виде второй сигнальной системы. Она свойственна только человеку и проявляется словесным общением, речью, понятиями. С появлением этой сигнальной системы стали возможными отвлеченное мышление, обобщение бесчисленных сигналов первой сигнальной системы. По И.П.Павлову, слова превратились в «сигналы сигналов».

Вторая сигнальная система

Возникновение второй сигнальной системы стало возможным благодаря сложным трудовым взаимоотношениям между людьми, так как эта система является средством общения, коллективного труда. Словесное общение не развивается вне общества. Вторая сигнальная система породила отвлеченное (абстрактное) мышление, письмо, чтение, счет.

Слова воспринимаются и животными, но совершенно отлично от людей. Они воспринимают их как звуки, а не их смысловое значение, как люди. Следовательно, у животных нет второй сигнальной системы. Обе сигнальные системы человека взаимосвязаны. Они организуют поведение человека в широком смысле слова. Причем вторая изменила первую сигнальную систему, так как реакции первой стали в значительной мере зависеть от социальной среды. Человек стал в состоянии управлять своими безусловными рефлексами, инстинктами, т.е. первой сигнальной системой.

Функции коры мозга

Знакомство с наиболее важными физиологическими функциями коры большого мозга свидетельствует о необычайном ее значении в жизнедеятельности. Кора вместе с ближайшими к ней подкорковыми образованиями является отделом центральной нервной системы животных и человека.

Функции коры головного мозга - осуществление сложных рефлекторных реакций, составляющих основу высшей нервной деятельности (поведения) человека. Не случайно у него она получила наибольшее развитие. Исключительным свойством коры являются сознание (мышление, память), вторая сигнальная система (речь), высокая организация труда и жизни в целом.