Множества и операции над множествами. Операции над множествами

Математическим анализом называется раздел математики, занимающийся исследованием функций на основе идеи бесконечно малой функции.

Основными понятиями математического анализа являются величина, множество, функция, бесконечно малая функция, предел, производная, интеграл.

Величиной называется все что может быть измерено и выражено числом.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( — содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:
  • А={1,2,3,5,7} — множество чисел
  • Х={x 1 ,x 2 ,...,x n } — множество некоторых элементов x 1 ,x 2 ,...,x n
  • N={1,2,...,n} — множество натуральных чисел
  • Z={0,±1,±2,...,±n} — множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Основные числовые множества

N {1,2,3,...,n} Множество всех
Z {0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
Q

Множество рациональных чисел .

Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.

Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.

R

Множество всех вещественных чисел .

Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:

Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.

Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø .

Элементы логической символики

Запись ∀x: |x|<2 → x 2 < 4 означает: для каждого x такого, что |x|<2, выполняется неравенство x 2 < 4.

Квантор

При записи математических выражений часто используются кванторы.

Квантором называется логический символ, который характеризует следующие за ним элементы в количественном отношении.

  • ∀- квантор общности , используется вместо слов "для всех", "для любого".
  • ∃- квантор существования , используется вместо слов "существует", "имеется". Используется также сочетание символов ∃!, которое читается как существует единственный.

Операции над множествами

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами

Свойства перестановочности

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Сочетательное свойство

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Счетные и несчетные множества

Для того, чтобы сравнить два каких-либо множества А и В, между их элементами устанавливают соответствие.

Если это соответствие взаимооднозначное, то множества называются эквивалентными или равномощными, А В или В А.

Пример 1

Множество точек катета ВС и гипотенузы АС треугольника АВС являются равномощными.

Множество - это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами. Основное отношение между элементом a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a не является элементом множества A , то пишут (a не входит в A , A не содержит a ). Множество можно задать указанием всех его элементов, причем в этом случае употребляются фигурные скобки. Так {a , b , c } обозначает множество трех элементов. Аналогичная запись употребляется и в случае бесконечных множеств, причем невыписанные элементы заменяются многоточием. Так, множество натуральных чисел обозначается {1, 2, 3, ...}, а множество четных чисел {2, 4, 6, ...}, причем под многоточием в первом случае подразумеваются все натуральные числа, а во втором - только четные.

Два множества A и B называются равными , если они состоят из одних и тех же элементов, т. е. A принадлежит B и, обратно, каждый элемент B принадлежит A . Тогда пишут A = B . Таким образом, множество однозначно определяется его элементами и не зависит от порядка записи этих элементов. Например, множество из трех элементов a , b , c допускает шесть видов записи:

{a , b , c } = {a , c , b } = {b , a , c } = {b , c , a } = {c , a , b } = {c , b , a }.

Из соображений формального удобства вводят еще так называемое "пустое множество", а именно, множество, не содержащее ни одного элемента. Его обозначают , иногда символом 0 (совпадение с обозначением числа нуль не ведет к путанице, так как смысл символа каждый раз ясен).

Если каждый элемент множества A входит во множество B , то A называется подмножеством B , а B называется надмножеством A . Пишут (A входит в B или A содержится в B , B содержит A ). Очевидно, что если и , то A = B . Пустое множество по определению считается подмножеством любого множества.

Если каждый элемент множества A входит в B , но множество B содержит хотя бы один элемент, не входящий в A , т. е. если и , то A называется собственным подмножеством B , а B - собственным надмножеством A . В этом случае пишут . Например, запись и означают одно и то же, а именно, что множество A не пусто.

Заметим еще, что надо различать элемент a и множество {a }, содержащее a в качестве единственного элемента. Такое различие диктуется не только тем, что элемент и множество играют неодинаковую роль (отношение не симметрично), но и необходимостью избежать противоречия. Так, пусть A = {a , b } содержит два элемента. Рассмотрим множество {A }, содержащее своим единственным элементом множество A . Тогда A содержит два элемента, в то время как {A } - лишь один элемент, и потому отождествление этих двух множеств невозможно. Поэтому рекомендуется применять запись , и не пользоваться записью .

После того, как мы научились составлять и различать множества, можно приступить к определению и других операций над ними.

Естественно, что два множества могут иметь одинаковые элементы (их можно выделить в отдельное множество), из всех элементов двух множеств можно составить одно новое множество, также можно рассмотреть отдельно элементы одного множества, которых во втором множестве нет.

Например, А – множество наклеек (марок), которые есть у Пети, В – множество наклеек, которые собрал Вася. Можно выделить множество наклеек, которые есть у обоих ребят; коллекцию различных наклеек, собранных ими вместе; множество наклеек Пети, которых нет у Васи.

Таким образом, мы проделали операции пересечения, объединения и разности двух множеств.

Опр.2.3.1. Пересечением множеств А и В называется множество С, состоящее из всех тех и только тех элементов, которые принадлежат каждому из данных множеств: С={х |хÎА и хÎВ}. Обозначается, А∩В.

Примеры. 1) Пусть A = {1; 2; 3}, B = {2; 3; 4; 5}, D = {10; 11}, тогда A B = {2; 3}, A D = Æ.

2) А = {2n: n Î N } - множество чисел, делящихся на 2, B = {3n: n Î N} - множество чисел, делящихся на 3, тогда A B = {6n | n Î N} - множество чисел, делящихся на 6.

3) А - отрезок , В - отрезок , тогда A B - отрезок .

4) Студент, сдавший все экзамены на «отлично» получает повышенную стипендию. Сессия состоит из четырех экзаменов. Пусть Аi – множество студентов, сдавших i -й экзамен на «отлично» (i = 1, 2, 3,4), тогда:

I – множество студентов, получающих повышенную стипендию.

Опр. 2.3.2. Объединением множеств А и В называется множество С, которое состоит из всех элементов данных множеств А и В и только из них: С={х |хÎА или хÎВ}. Обозначается, А UВ.

Примеры. 1) A = {1; 2; 3}, B = {2; 3; 4; 5}, тогда C = A U B == {1; 2; 3; 4; 5}.

2) A = (–∞, 2], B = (1, +∞), тогда C = A U B = R .

3) А = , В = , тогда A U B = .

3) Если А – множество студентов, не сдавших первый экзамен, В – второй, то А U В – множество студентов – задолжников после двух экзаменов (не исключено, что кто-то не сдал оба экзамена).

Опр.2.3.3. Разностью множеств А и В называется множество С, состоящее из всех элементов множества А, не принадлежащих множеству В: С={х | х Î А и х Ï В}. Обозначается, А\В.

Примеры 1) A = {1; 2; 3}, B = {2; 3; 4; 5}, тогда А\В={1}, В\А={4, 5}.

2) R \ Q – множество иррациональных чисел.

3) Q \ R = Æ.

Опр.2.3.4 . Симметричной разностью множеств А и В называется множество С, состоящее из всех элементов множества А, не принадлежащих множеству В и всех элементов множества В, не принадлежащих множеству А: С={х | (х Î А и х Ï В) или (х Î В и х Ï А) }. Обозначается, А∆В.



Пример. А={1,2,3,4,5}, В={4,5,6,7}, А∆В= {1,2,3,6,7}

В каждом отдельном случае мы рассматриваем всевозможные подмножества одного и того же множества. Например, в начальной школе дети учатся работать (выполнять основные арифметические операции) сначала с числами из первого десятка натуральных чисел, затем из первой сотни и т.д. Но их действия не выходят за рамки натуральных чисел (отрицательные и дробные числа они будут проходить позже). Аналогично, учитель может работать с некоторыми группами учеников, которые будут являться подмножествами определенного множества обучаемых данным учителем школьников. Каждый человек носит различные комбинации вещей, но только из своего личного гардероба. Это основное множество (свое в каждом отдельном случае) называется универсальным множеством.

Опр.2.3.5. Универсальным множеством называется множество, подмножества которого (и только они) в данный момент рассматриваются. Обозначают, Е (или U в разной литературе).

При работе с числовыми множествами, если не дается дополнительных указаний, в качестве основного (универсального) множества будем считать множество R действительных чисел.

Опр.2.3.6. Дополнением множества А называется разность Е \А. Обозначается, А’ или и читается «не-А». Иначе, дополнением множества А называется множество А’, состоящее из всех элементов, не принадлежащих множеству А.

Примеры. 1) Е ={ множество студентов в группе}, A ={ множество студентов, сдавших первый экзамен}, то А’ ={ множество студентов, не сдавших первый экзамен}.

2) Е={буквы русского алфавита}, А={множество гласных букв}, тогда

А’={множество согласных букв и букв ь и ъ}.

3) Пусть Е – множество сотрудников школы, A – множество сотрудников старше 30 лет, B – множество сотрудников мужского пола, C – множество сотрудников занимающих должности вспомогательного персонала.

Тогда В – множество женщин; А’ÇВÇC – множество мужчин занимающих должности вспомогательного персонала младше 30 лет; А È(В ÇС ’) – множество сотрудников старше 30 лет или мужчин не занимающих должности вспомогательного персонала; B \C – множество мужчин, не являющихся вспомогательным персоналом; C \B – множество сотрудников вспомогательного персонала – женщин.

4) Даны множества А={2, 3, 5, 8, 13, 15}, В={1, 3, 4, 8, 16}, С={12, 13, 15, 16}, D={0, 1, 20}. Найти АUВ, СUD, В∩С, А∩D, А\С, D\В, АUВUС, А∩В∩С, ВUD∩С, А∩С\D.

Решение : Будем пользоваться определениями соответствующих операций и учтем, что сначала должна выполняться операция пересечения множеств, а затем уже объединение или разность.

Получим АUВ={1, 2, 3, 4, 5, 8, 13, 15, 16};

СUD={0, 1, 12, 13, 15, 16, 20};

А\С={2, 3, 5, 8};

АUВUС={1, 2, 3,4, 5, 8, 12, 13, 15, 16};

А∩В∩С=Æ;

ВUD∩С={1, 3, 4, 8, 16};

А∩С\D={13, 15}.

5) Пусть Е={1, 2, 3, 4, 5, 6, 7, 8,9}, A={1, 2, 3, 5}, B={2, 4, 6, 8}, C={1, 3, 5, 7}, D={4, 5, 7, 8}. Выразить через заданные множества A, B, C, D следующие множества: 1) К={1,2,3,4,5,7,8}, 2) L={4, 7 ,8}, 3) F={2, 5}, 4) G={5, 7, 9}.

Решение : 1) K={1,2,3,4,5,7,8}=AUD.

2) L={4, 7 ,8}=D\A.

б) A\(C\D)={2, 5}.

б) AUB={1, 2, 3, 4, 5, 6, 8},

в) (AUB)’={7, 9},

г) (A∩D)U((AUB)’)={5, 7, 9}.

Свойства операций над множествами:

Таблица 2.3.1.

Свойства операции пересечения: 1) А∩А=А; 2) А∩Ø=Ø; 3) А∩А’= Ø; 4) А∩Е =А; 5) А∩В=В∩А. Свойства операции объединения: 1) АUА=А; 2) АU Ø =А; 3) АUА’=Е ; 4) АUЕ =Е ; 5) АUВ=ВUА.
Свойства операции разности:
1) А\А=Ø; 2) А\ Ø =А; 3) А\А’= А; 4) А\Е =Ø; 5) Е \А=А’; 6) Ø \А=Ø; 7) А\В ≠ В\А.

§ 2.4. Диаграммы Эйлера-Венна, таблицы вхождения элементов, координатная плоскость.

Для наглядного представления (графического изображения) множеств и результатов операций над ними удобно пользоваться так называемыми диаграммами Эйлера-Венна (кругами Эйлера).

При этом множества изображаются на плоскости в виде замкнутых кругов, а универсальное множество в виде прямоугольника. Элементы множества – точки внутри соответствующего круга.

Таблица 2.4.1.

Объединение АВ:

Пересечение А∩В:

Разность: А\В

Примеры: Изобразить следующие множество с помощью диаграммы Венна

1) (АUВ)\(С∩А):

Таблица 2.4.2.

1)(АUВ)

2) (С∩А)

3) (АUВ)\(С∩А)

2) А∩В∩С;

а) А∩В б) А∩В∩С
а) АUС
2. В∩С 3.(А∩В)U(В∩С)

Есть и другой способ проиллюстрировать операции над множествами. Это, так называемая, таблица вхождения элементов в множества , в которой рассматриваются все возможные случаи вхождения выбранного элемента в множества А и В и их комбинации. Результат принадлежности этого элемента множествам А и В отмечают в первых двух столбцах таблицы по правилу: 1 – если элемент входит в данное множество, 0 – если не входит. Получится четыре случая или четыре строчки в таблице. Столбцы, соответствующие операциям A U B , A B , A \ B , заполняются согласно определений этих операций (табл. 1).


Например, вторая строка в табл. 1 читается так: если элемент входит в A , но не входит в B , то он входит в А U В , не входит в А В , но входит в A \B .

Примеры. 1) С помощью таблицы вхождения элементов определите верно ли следующее равенство UВ) = А В


Из таблицы вхождения элементов в множества видно, что при различных вариантах вхождения элемента в множества А , В он входит или не входит в левую и правую части рассматриваемого равенства одновременно (см. четвертый и седьмой столбцы). Значит UВ) = А В ’.

2) С помощью таблицы вхождения элементов определите верно ли следующее равенство (В UС ) \ В = С.


Второй и четвертый столбцы не совпадают, поэтому это равенство неверное.

На координатной прямой множества изображаются в виде отрезка, концы которого показываются кружками: закрашенным кружком, если координата конца отрезка принадлежит множеству, в противном случае – не закрашенным кружком. Например, множество A = {x: − 2 < x ≤ 3} на координатной прямой можно показать так:


Примеры : Даны множества:

1) A = {x: − 5 ≤ x ≤ 6}, B = {x: − 3 < x < 8},

2) A = {х: −3 < х ≤ 2} и B = {х: 0 ≤ х < 5},

3) C = {х: 2 < х < 4} и D = {х: 3 ≤ х ≤ 5},

4) E = {х: −3 ≤ х ≤ 2} и F = {х: 2 < х ≤ 5}.

Найдите пересечения множеств и покажите их на координатной прямой.

Решение:

1)Изобразим на координатной прямой множества А и В:

D = {х: 3 ≤ х ≤ 5}:

C, з начит, пересечению множеств С и D будут принадлежать все точки полуинтервала }