Методическая разработка: Исследовательская работа "Решение задач на применение производной в формате ЕГЭ". Задания с графиками функций в огэ

ВНЕАУДИТОРНАЯ ПРАКТИЧЕСКАЯ РАБОТА 2

Преобразование графиков функций.

Цель

Постройте графики функций, используя различные преобразования, ответьте на вопрос задачи.

Выполнение работы

Методические указания

Работа рассчитана на 10 вариантов, номер варианта совпадает с последней цифрой порядкового номере в списке. Например, 1, 11, 21, 31 …выполняют 1 вариант, 2,12, 22 … - 2 вариант, и т.д.

Работа состоит из двух частей: первая часть задания 1 – 5, это задания которые обязательно нужно выполнить, чтобы получить зачет, если эти задания выполнены с ошибкой, необходимо их исправить и снова сдать работу на проверку. Вторая часть, содержит задания, выполнив которые, вы можете заработать дополнительную оценку: основная часть +2 задания – «4», основная часть +3 задания – «5».

Задание 1. Графиком линейной функции является прямая, для ее построения достаточно двух точек. (значения аргумента х берем произвольно, а значение функции у, считаем подставляя в формулу).

Чтобы проверить проходит ли график функции через указанную точку нужно координаты точки подставить вместо х и у, если получили верное равенство, то прямая проходит через указанную точку, в противном случае – не проходит.

Задание 2, 3, 4. Графики указанных функций получаются из графиков функций , используя сдвиг вдоль оси х или у.

, сначала строим график функции или , затем сдвигаем его на «а» единиц вправо или влево (+а – влево, - а вправо), затем сдвигаем на «в» единиц вверх или вниз (+в – вверх, -в – вниз)

Аналогично с другими функциями:

Задание 5 Чтобы построить график функции: , нужно: 1) построить график функции , 2) часть графика которая находится выше оси х оставить без изменения, 3) часть графика, которая находится ниже оси х зеркально отобразить.

Задачи для самостоятельного решения.

Обязательная часть

Задание 1. Постройте график линейной функции, определите, проходит ли график функции через указанную точку:


Задание 2. Постройте график квадратичной функции, укажите множество значений данной функции.


Задание 3. Постройте график функции, определите, возрастает или убывает указанная функция.


Задание 4. Постройте график функции, ответьте на вопрос задачи.


Задание 5. Постройте график функции, содержащей знак модуля.


Задачи на дополнительную оценку.

Задание 6. Постройте график функции, заданной кусочно, определите, есть ли точка разрыва у данной функции:



Задание 7. Определите, сколько решений имеет система уравнений, отвеет обоснуйте. Сделайте выводы, ответив на вопросы.

    Графики каких функций вы строили в данной работе?

    Как называется график линейной функции?

    Как называется график квадратичной функции?

    Какие преобразования графиков вы знаете?

    Как в системе координат располагается график четной функции? График нечетной функции?

Функция – это такая вещь, которая связывает две (или более) переменных между собой. Другими словами, функция помогает найти одну переменную, если мы знаем значение второй переменной. Например, если у нас в кармане есть 100 рублей, а шоколадка стоит 50 рублей, то мы можем купить 2 шоколадки. Если у нас в кармане есть 200 рублей, то мы можем купить 4 шоколадки. В этом случае первая переменная – это сумма, которая есть в кармане, а вторая переменная – количество шоколадок, которые мы можем купить. Стоимость шоколадки составляет 50 рублей, она не зависит от того сколько у нас денег, поэтому эта величина является постоянной.

Можно составить функцию для этого случая: у = 50 х , где у – деньги в кармане, х – количество шоколадок.

Естественно функции бывают более сложными. Но для решения заданий ОГЭ по математике достаточно знать как выглядят графики основных функций.

1. Функция вида y = kx + b (прямая линия)

В этой функции k и b это числа. Функция может быть записана в разном виде: y = x , y = 2x , y = 3x – 4, y = -9x +44, y = и т д. Главным признаком является присутствие икса (х ) в первой степени (то есть все случаи, когда мы не делим на х ).
Число k в этом случае отвечает за то, в какую сторону наклонена линия. Если k > 0 , то функция возрастает вправо. Если k < 0 , то функция возрастает влево.


Число b y . Если b >0 , то график пересекает ось y выше начала координат, если b < 0 – ниже.

2. Функция вида y = ax 2 + bx +c (парабола)

В этой функции a, b, c – числа. Функция может быть записана в разном виде: y = x 2, y = 3x 2 + 8, y = 2x 2 -4x + 10, y = -x 2 – 9x +1, y = – 7 и т. д. Главным признаком является наличие икса в квадрате (x 2).

Число а отвечает за то, в какую сторону (вверх или вниз) направлены ветви параболы (я еще называю веселый смайлик и грустный смайлик). Если a > 0 , то веселый смайлик, если a < 0 – грустный.

Число b отвечает за то в какую сторону (вправо или влево) смещена точка начала параболы (точка перегиба) относительно оси y . Если b > 0 , то график смещен влево, если b < 0 – вправо.

Число c – это точка пересечения графика с осью y . Если c >0 , то график пересекает ось y выше начала координат, если c < 0 – ниже.



3. Функция вида y = k/x + b (гипербола)

Эта функция по виду напоминает функцию прямой, за тем исключением, что х находится в знаменателе . Это как раз и является ее отличительной особенностью. Число k отвечает за расположение функции по четвертям, если k > 0 , то ветви гиперболы располагаются в первой и третьей четвертях, если k < 0 , то ветви располагаются во второй и четвертой четвертях.



Число а отвечает за сдвиг всей функции вниз (а < 0 ) или вверх (a > 0 ).


4. Функция вида y = a (прямая)

В этом случае функция выглядит как прямая, параллельная оси х . Например у = 2, это прямая линия, которая проходит параллельно оси х и пересекает ось у в точке 2.



5. Функция вида y = √x

Этот вид встречается в заданиях редко, однако лучше запомнить. Это практически парабола, но повернутая по часовой стрелке на 90 0 , а также в ней отсутствует ее нижняя половина. Если не понятно, то просто смотрите на рисунок:



Муниципальное общеобразовательное учреждение

«Салтыковская средняя общеобразовательная школа

Ртищевского района Саратовской области»

Мастер – класс по математике

в 11 классе

по теме

«ПРОИЗВОДНАЯ ФУНКЦИИ

В ЗАДАНИЯХ ЕГЭ»

Провела учитель математики

Белоглазова Л.С.

2012-2013 учебный год

Цель мастер – класса : развивать у учащихся навыкиприменения теоретических знаний по теме «Производная функции» для решения задач единого государственного экзамена.

Задачи

Образовательные: обобщить и систематизировать знания учащихся по теме

«Производная функции», рассмотреть прототипы задач ЕГЭ по данной теме, предоставить обучающимся возможность проверить свои знания при самостоятельном решении задач.

Развивающие: способствовать развитию памяти, внимания, навыков самооценки и самоконтроля; формированию основных ключевых компетенций (сравнение, сопоставление, классификация объектов, определение адекватных способов решения учебной задачи на основе заданных алгоритмов, способность самостоятельно действовать в ситуации неопределённости, контролировать и оценивать свою деятельность, находить и устранять причины возникших трудностей).

Воспитательные: способствовать:

формированию у учащихся ответственного отношения к учению;

развитию устойчивого интереса к математике;

созданию положительной внутренней мотивации к изучению математики.

Технологии : индивидуально–дифференцированного обучения, ИКТ.

Методы обучения : словесный, наглядный, практический, проблемный.

Формы работы: индивидуальная, фронтальная, в парах.

Оборудование и материалы для урока: проектор, экран, ПК для каждого ученика, тренажёр (Приложение №1), презентация к уроку (Приложение №2), индивидуально – дифференцированные карточки для самостоятельной работы в парах (Приложение №3), список сайтов сети Интернет, индивидуально-дифференцированное домашнее задание (Приложение №4).

Пояснение к мастер - классу. Данный мастер – класс проводится в 11 классе с целью подготовки к ЕГЭ. Нацелен на применение теоретического материала по теме «Производная функции» при решении экзаменационных задач.

Продолжительность мастер – класса – 30 мин.

Структура мастер - класса

I .Организационный момент -1 мин.

II .Сообщение темы, цели мастер - класса, мотивация учебной деятельности-1 мин.

III . Фронтальная работа. Тренинг «Задания В8 ЕГЭ». Анализ работы с тренажёром - 6 мин.

IV .Индивидуально - дифференцированная работа в парах. Самостоятельное решение задач В14. Взаимопроверка - 7 мин.

V . Проверка индивидуального домашнего задания. Задача с параметром С5 ЕГЭ

3 мин.

VI .Оn – line тестирование. Анализ результатов тестирования - 9 мин.

VII . Индивидуально – дифференцированное домашнее задание -1 мин.

VIII .Оценки за урок - 1 мин.

IX .Итог урока. Рефлексия -1 мин.

Ход мастер - класса

I.Организационный момент.

II.Сообщение темы, цели мастер - класса, мотивация учебной деятельности.

(Слайды 1-2,пр иложение №2)

Тема нашего занятия «Производная функции в заданиях ЕГЭ». Всем известно высказывание «Мал золотник да дорог». Одним из таких «золотников» в математике является производная. Производная применяется при решении многих практических задач математики, физики, химии, экономики и других дисциплин. Она позволяет решать задачи просто, красиво, интересно.

Тема «Производная» представлена в заданиях части В (В8, В14) единого государственного экзамена. Некоторые задания С5 также можно решить с применением производной. Но для решения этих задач требуется хорошая математическая подготовка и нестандартное мышление.

Вы работали с документами, регламентирующими структуру и содержание контрольных измерительных материалов единого государственного экзамена по математике 2013. Сделайте вывод о том, какие знания и умения вам нужны для успешного решения задач ЕГЭ по теме «Производная» .

(Слайды 3-4, п риложение №2)

Мы изучили «Кодификатор элементов содержания по МАТЕМАТИКЕ для составления контрольных измерительных материалов для проведения единого государственного экзамена»,

«Кодификатор требований к уровню подготовки выпускников», «Спецификацию контрольных измерительных материалов», «Демонстрационный вариант контрольных измерительных материалов единого государственного экзамена 2013» и выяснили, какие знания и умения о функции и её производной нужны для успешного решения задач по теме «Производная».

Необходимо

  • ЗНАТЬ

п равила вычисления производных;

производные основных элементарных функций;

геометрический и физический смысл производной;
уравнение касательной к графику функции;
исследование функции с помощью производной.

    УМЕТЬ

выполнять действия с функциями (описывать по графику поведение и свойства функции, находить её наибольшее и наименьшее значения).

    ИСПОЛЬЗОВАТЬ

приобретенные знания и умения в практической деятельности и повседневной жизни.

Вы владеете теоретическими знаниями по теме «Производная». Сегодня мы будем УЧИТЬСЯ ПРИМЕНЯТЬ ЗНАНИЯ О ПРОИЗВОДНОЙ ФУНКЦИИ ДЛЯ РЕШЕНИЯ ЗАДАЧ ЕГЭ. ( Слайд 4, приложение №2)

Ведь недаром Аристотель говорил, что “УМ ЗАКЛЮЧАЕТСЯ НЕ ТОЛЬКО В ЗНАНИИ, НО И В УМЕНИИ ПРИМЕНЯТЬ ЗНАНИЯ НА ПРАКТИКЕ” ( Слайд 5, приложение №2)

В конце урока мы вернёмся к цели нашего занятия и выясним, достигли ли её?

III . Фронтальная работа. Тренинг «Задания В8 ЕГЭ» (Приложение №1) . Анализ работы с тренажёром.

Выберите правильный ответ из четырёх предложенных.

В чём, по вашему мнению, заключается сложность выполнения задания В8?

Как вы думаете, какие типичные ошибки допускают выпускники на экзамене при решении этой задачи?

При ответах на вопросы задания В8 вы должны уметь описывать по графику производной поведение и свойства функции, а по графику функции – поведение и свойства производной функции. А для этого нужны хорошие теоретические знания по следующим темам: «Геометрический и механический смысл производной. Касательная к графику функции. Применение производной к исследованию функций».

Проанализируйте, какие задания вызвали у вас затруднения?

Какие теоретические вопросы вам необходимо знать?

IV . Индивидуально - дифференцированная работа в парах. Самостоятельное решение задач В14. Взаимопроверка. (Приложение №3)

Вспомните алгоритм решения задач (В14 ЕГЭ) на нахождение точек экстремума, экстремумов функции, наибольшего и наименьшего значений функции на промежутке с помощью производной.

Решите задачи с помощью производной.

Перед учащимися поставлена проблема:

«Подумайте, можно ли решить некоторые задачи В14 другим способом, без применения производной?»

1 пара (Лукьянова Д., Гаврюшина Д.)

1)В14. Найдите точку минимума функции у =10х-ln (х+9)+6

2)В14. Найдите наибольшее значение функции y =

- Попытайтесь решить вторую задачу двумя способами.

2 пара (Санинская Т., Сазанов А.)

1)В14. Найдите наименьшее значение функции у=(х-10) на отрезке

2)В14. Найти точку максимума функции у= -

(Учащиеся защищают своё решение, записывая основные этапы решения задач на доске. Учащиеся 1 пары (Лукьянова Д., Гаврюшина Д.) предоставляют два способа решения задачи №2).

Разрешение проблемы. Вывод, который должны сделать учащиеся:

«Некоторые задачи В14 ЕГЭ на нахождение наименьшего и наибольшего значения функции можно решить без применения производной, опираясь на свойства функций».

Проанализируйте, какая ошибка была допущена вами в задаче?

Какие теоретические вопросы вам необходимо повторить?

V . Проверка индивидуального домашнего задания. Задача с параметром С5(ЕГЭ) (Слайды 7-8, приложение №2 )

Лукьяновой К. было дано индивидуальное домашнее задание: из пособий по подготовке к ЕГЭ выбрать задачу с параметром (С5) и решить её с помощью производной.

(Учащаяся приводит решение задачи, опираясь на функционально - графический метод, как один из методов решения задач С5 ЕГЭ и даёт краткое объяснение данного метода).

Какие знания о функции и её производной необходимы при решении задач С5 ЕГЭ?

V I. Оn – line тестирование по заданиям В8, В14. Анализ результатов тестирования.

Сайт для тестирования на уроке:

Кто не допустил ошибок?

Кто испытывал трудность при тестировании? Почему?

В каких заданиях допущены ошибки?

Сделайте вывод, какие теоретические вопросы вам необходимо знать?

VI I. Индивидуально – дифференцированное домашнее задание

(Слайд 9, приложение №2 ), (Приложение №4).

Я подготовила список сайтов сети интернет для подготовки к ЕГЭ. Вы можете также проходить на этих сайтах О n line тестирование. К следующему уроку вам нужно: 1) повторить теоретический материал по теме «Производная функции»;

2) на сайте «Открытый банк заданий по математике» ( ) найти прототипы заданий В8 и В14 и решить не менее 10 задач;

3) Лукьяновой К., Гаврюшиной Д. решить задачи с параметрами. Остальным учащимся решить задачи 1-8 (вариант 1).

VI II. Оценки за урок.

Какую оценку за урок ты бы себе поставил?

Как ты думаешь, можно было бы тебе работать на уроке лучше?

IХ. Итог урока. Рефлексия

Подведем итог нашей работы. Какова была цель урока? Как вы считаете, достигнута ли она?

Посмотрите на доску и одним предложением, выбирая начало фразы, продолжите предложение, которое вам больше всего подходит.

Я почувствовал…

Я научился…

У меня получилось …

Я смог…

Я попробую …

Меня удивило, что …

Мне захотелось…

Можете ли вы сказать, что в ходе урока произошло обогащение запаса ваших знаний?

Итак, вы повторили теоретические вопросы о производной функции, применили свои знания при решении прототипов заданий ЕГЭ (В8, В14), а Лукьянова К. выполнила задачу С5 с параметром, которая является задачей повышенной степени сложности.

Мне приятно было с вами работать, и надеюсь, что знания, полученные на уроках математики, вы сможете успешно применить не только при сдаче ЕГЭ, но и в дальнейшей своей учёбе.

Закончить урок мне хотелось бы словами итальянского философа Фомы Аквинского «Знание – столь драгоценная вещь, что его не зазорно добывать из любого источника» (Слайд 10, приложение №2).

Желаю успехов в подготовке к ЕГЭ!

\(\DeclareMathOperator{\tg}{tg}\)\(\DeclareMathOperator{\ctg}{ctg}\)\(\DeclareMathOperator{\arctg}{arctg}\)\(\DeclareMathOperator{\arcctg}{arcctg}\)

Содержание

Элементы содержания

Производная, касательная, первообразная, графики функций и производных.

Производная Пусть функция \(f(x)\) определена в некоторой окрестности точки \(x_0\).

Производной функции \(f\) в точке \(x_0\) называется предел

\(f"(x_0)=\lim_{x\rightarrow x_0}\dfrac{f(x)-f(x_0)}{x-x_0},\)

если этот предел существует.

Производная функции в точке характеризует скорость изменения этой функции в данной точке.

Таблица производных

Функция Производная
\(const\) \(0\)
\(x\) \(1\)
\(x^n\) \(n\cdot x^{n-1}\)
\(\dfrac{1}{x}\) \(-\dfrac{1}{x^2}\)
\(\sqrt{x}\) \(\dfrac{1}{2\sqrt{x}}\)
\(e^x\) \(e^x\)
\(a^x\) \(a^x\cdot \ln{a}\)
\(\ln{x}\) \(\dfrac{1}{x}\)
\(\log_a{x}\) \(\dfrac{1}{x\ln{a}}\)
\(\sin x\) \(\cos x\)
\(\cos x\) \(-\sin x\)
\(\tg x\) \(\dfrac{1}{\cos^2 x}\)
\(\ctg x\) \(-\dfrac{1}{\sin^2x}\)

Правила дифференцирования \(f\) и \(g\) - функции, зависящие от переменной \(x\); \(c\) - число.

2) \((c\cdot f)"=c\cdot f"\)

3) \((f+g)"= f"+g"\)

4) \((f\cdot g)"=f"g+g"f\)

5) \(\left(\dfrac{f}{g}\right)"=\dfrac{f"g-g"f}{g^2}\)

6) \(\left(f\left(g(x)\right)\right)"=f"\left(g(x)\right)\cdot g"(x)\) - производная сложной функции

Геометрический смысл производной Уравнение прямой - не параллельной оси \(Oy\) можно записать в виде \(y=kx+b\). Коэффициент \(k\) в этом уравнении называют угловым коэффициентом прямой . Он равен тангенсу угла наклона этой прямой.

Угол наклона прямой - угол между положительным направлением оси \(Ox\) и данной прямой, отсчитываемый в направлении положительных углов (то есть, в направлении наименьшего поворота от оси \(Ox\) к оси \(Oy\)).

Производная функции \(f(x)\) в точке \(x_0\) равна угловому коэффициенту касательной к графику функции в данной точке: \(f"(x_0)=\tg\alpha.\)

Если \(f"(x_0)=0\), то касательная к графику функции \(f(x)\) в точке \(x_0\) параллельна оси \(Ox\).

Уравнение касательной

Уравнение касательной к графику функции \(f(x)\) в точке \(x_0\):

\(y=f(x_0)+f"(x_0)(x-x_0)\)

Монотонность функции Если производная функции положительна во всех точках промежутка, то функция возрастает на этом промежутке.

Если производная функции отрицательна во всех точках промежутка, то функция убывает на этом промежутке.

Точки минимума, максимума и перегиба положительного на отрицательное в этой точке, то \(x_0\) - точка максимума функции \(f\).

Если функция \(f\) непрерывна в точке \(x_0\), а значение производной этой функции \(f"\) меняется с отрицательного на положительное в этой точке, то \(x_0\) - точка минимума функции \(f\).

Точки, в которых производная \(f"\) равна нулю или не существует называются критическими точками функции \(f\).

Внутренние точки области определения функции \(f(x)\), в которых \(f"(x)=0\) могут быть точками минимума, максимума или перегиба.

Физический смысл производной Если материальная точка движется прямолинейно и её координата изменяется в зависимости от времени по закону \(x=x(t)\), то скорость этой точки равна производной координаты по времени:

Ускорение материальной точки в равно производной скорости этой точки по времени:

\(a(t)=v"(t).\)

Применение производной в формате ЕГЭ .

Выполнили: Плачковская Катерина, Леонова Юлия 11Б класс Научный руководитель: Солуян Надежда Николаева, учитель математики, «Почетный работник общего образования Российской Федерации»


Введение

Производная-это одна из сложнейших тем в математике, при ее помощи решаются задачи по физике, химии, биологии и даже географии. Многие учащиеся затрудняются или вообще не умеют их решать. Изучение производной продиктовано еще и тем, что многие задания ЕГЭ содержат применение производной.

Поэтому мы решили изучить эту тему более подробно.


Цель работы : сделать классификацию задач на применение производной в материалах ЕГЭ и рассмотреть способы их решения.

Задачи:

  • поиск исторических фактов
  • сбор информации о задачах на применение производной в материалах ЕГЭ
  • анализ взаимосвязи задач со способами их решения
  • изучить основные типы задач на применение производной
  • решить задачи включенные в материалы ЕГЭ
  • провести статистическое исследование.

История производной

Задачи на нахождения экстремума, проведение касательных к кривым и вычисление скорости постоянно возникали в практической деятельности.

В древности и в средние века такие задачи решались геометрическими и механическими способами. Позже было обнаружено, что все эти задачи можно решить единым методом, используя бесконечно малые величины. Развитие этого метода в трудах Ньютона и Лейбница привело к созданию математического анализа, появление которого широко раздвинуло границы применения математики.


Теоретические сведения

Производной функции y=f(x) называется предел отношения приращения функции к приращённому аргументу, при последнем стремящемся к нулю.


Физический смысл производной

Если тело движется прямолинейно по закону y=S’(t) , то мгновенная скорость (U) есть производная пути по времени.

U=S’(t)

Ускорение - есть производная скорости a=U’ (t)


Геометрический смысл производной

Тангенс угла наклона касательной (угловой коэффициент касательной), проведенный к графику функции y=f(x) в точке x 0 равен производной функции y=f"(x) в этой точке:




Производная сложной функции

Функция, заданная в виде y=f(g(x)) ,называется сложной, составленной из функций g и f . (функция, аргументом которой служит функция, называется сложной)

элементарная функция сложная функция

аргумент


Алгоритм нахождения наименьшего и наибольшего значений непрерывной функции y=f(x) на отрезке

1. Найти область определения функции

2. Найти производную f’(x)

3. Найти стационарные и критические точки функции, лежащие внутри отрезка (y’=0)

4. Вычислить значения функции y=f(x) в точках, отобранных на втором шаге, и в точках a и b; выбрать среди этих значений наименьшее (это будет y наим)


Алгоритм исследования непрерывной функции y=f(x) на монотонность и экстремумы

1. Найти область определения

2. Найти производную f’(x)

3. Найти стационарные (f’(x)=0) и критические (f’(x) не существует) точки функции y=f(x)

4. Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках

5. Сделать выводы о монотонности функции и о ее точках экстремума



Статистическое исследование.

1 этап работы:

Проанализировав результаты опроса 11-ых классов, выявила темы, вызывающие наибольшие затруднения у учеников:

Тригонометрические уравнения - техника дифференцирования - Задачи на физический и геометрический смысл производной -Исследование функций при помощи производной - Текстовые задачи - Решение задач на определение площадей - Иррациональные уравнения и выражения - Рациональные уравнения и выражения.

Вывод: тема «Применение производной» содержится в первых 3-х темах, значит, она вызывает наибольшее затруднения.


2 этап работы :

изучение основных видов задач по теме «Применение производной в заданиях единого государственного экзамена»

Применение производной формате в

формате ЕГЭ

Геометрический смысл

Аналитический смысл

Физический смысл





Задачи на применение физического смысла производной

Задача 1.

x(t) = (½)×t² - t – 4 . Определите в какой момент времени t -- скорость V = 6м/с.

Решение.

1) (x(t))‘ = ((½)×t² ­ t - 4)’

2) V(t) = (s(t))’; (s(t))’ = (x(t))’;

V(t) = ((½)×t² – t – 4)’

V(t) = ((½)×t²)’– (t)’– (4)’

3) V(t) = 6м/с (по условию)

Ответ: 7 с.


Задача 2.

Материальная точка движется по закону

х(t) = 15 + 16×t – 3×t². Каким будет ускорение через 2 секунды после начала движения?

Решение .

V(t) = 15 + 16×t – 3×t²

(V(t))’ = (15 + 16×t – 3×t²)’

Т.к (V(t))’ = a (t)

a (t) = 16 – 6×t

a(t) = 16 – 6 ×2

a(t) = 4

Ответ: 4 м/с².


Задачи на применение геометрического смысла производной

Задача 1

Прямая y = 5 x − 3 параллельна касательной к графику функции y = x 2 + 2 x − 4. Найдите абсциссу точки касания.

Решение

Прямая параллельная касательной имеет одинаковый с ней угол наклона к оси абсцисс. Т.е., угловой коэффициент касательной (он же тангенс угла наклона) равен 5, как у заданной прямой. С другой стороны, мы знаем, что угловой коэффициент касательной равен производной функции в точке касания. Найдем производную: y "(x ) = (x 2 + 2 x − 4)" = 2 x + 2. Составим уравнение, подставив в выражение для производной неизвестную абсциссу точки касания x 0 . 2 x 0 + 2 = 5 2 x 0 = 5 − 2 = 3 x 0 = 3/2 = 1,5.

Ответ: 1,5


Задача 2. На рисунке 1 изображен график функции y = f (x ), определенной на интервале (-10,5;19). Определите количество целых точек, в которых производная функции положительна.

Решение

Производная функции положительна

на тех участках, где функция возрастает.

По рисунку видно, что это промежутки

(−10,5;−7,6), (−1;8,2) и (15,7;19). Перечис-

лим целые точки внутри этих интервалов:

"−10","−9", "−8","0", "1","2", "3","4", "5","6",

"7","8", "16","17", "18". Всего 15 точек.

Ответ: 15


Задача 3. На рисунке изображен график функции y = f (x ), определенной на интервале (-11;23). Найдите сумму точек экстремума функции на отрезке . Решение На указанном отрезке мы видим 2 точки экстремума. Максимум функции достигается в точке x 1 = 4, минимум в точке x 2 = 8. x 1 + x 2 = 4 + 8 = 12. Ответ: 12


Аналитический способ решения

Задача 1.

Найдите значение производной функции в точке x0=2

Решение а) Найдем значение производной функции:

б) Найдем значение производной функции в точке x0:

Ответ: 31


Задача 2.

Найти значение производной функции F(x)=(3x+1)2 -3 в точке x=2/3.

Решение.

Найдём производную сложной функции: F’(x)=6(x+1)=6x+6;

Найдём значение производной функции в точке x=2/3:

F’(2/3)=6(2/3)+6=10

Ответ:10