Сокращение дробей с неизвестными. Сокращение алгебраических дробей

Калькулятора онлайн выполняет сокращение алгебраических дробей в соответствии с правилом сокращения дробей: замена исходной дроби равной дробью, но с меньшими числителем и знаменателем, т.е. одновременное деление числителя и знаменателя дроби на их общий наибольший общий делитель (НОД). Также калькулятор выводит подробное решение, которое поможет понять последовательность выполнения сокращения.

Дано:

Решение:

Выполнение сокращения дробей

проверка возможности выполнения сокращения алгебраической дроби

1) Определение наибольшего общего делителя (НОД) числителя и знаменателя дроби

определение наибольшего общего делителя (НОД) числителя и знаменателя алгебраической дроби

2) Сокращение числителя и знаменателя дроби

сокращение числителя и знаменателя алгебраической дроби

3) Выделение целой части дроби

выделение целой части алгебраической дроби

4) Перевод алгебраической дроби в десятичную дробь

перевод алгебраической дроби в десятичную дробь


Помощь на развитие проекта сайт

Уважаемый Посетитель сайта.
Если Вам не удалось найти, то что Вы искали - обязательно напишите об этом в комментариях, чего не хватает сейчас сайту. Это поможет нам понять в каком направлении необходимо дальше двигаться, а другие посетители смогут в скором времени получить необходимый материал.
Если же сайт оказался Ваме полезен - подари проекту сайт всего 2 ₽ и мы будем знать, что движемся в правильном направлении.

Спасибо, что не прошели мимо!


I. Порядок действий при сокращении алгебраической дроби калькулятором онлайн:

  1. Чтобы выполнить сокращение алгебраической дроби введите в соответствующие поля значения числителя, знаменателя дроби. Если дробь смешанная, то также заполните поле, соответствующее целой части дроби. Если дробь простая, то оставьте поле целой части пустым.
  2. Чтобы задать отрицательную дробь, поставьте знак минус в целой части дроби.
  3. В зависимости от задаваемой алгебраической дроби автоматически выполняется следующая последовательность действий:
  • определение наибольшего общего делителя (НОД) числителя и знаменателя дроби ;
  • сокращение числителя и знаменателя дроби на НОД ;
  • выделение целой части дроби , если числитель итоговой дроби больше знаменателя.
  • перевод итоговой алгебраической дроби в десятичную дробь с округлением до сотых.
  • В результате сокращения может получиться неправильная дробь. В этом случае у итоговой неправильной дроби будет выделена целая часть и итоговая дробь будет переведена в правильную дробь.
  • II. Для справки:

    Дробь - число, состоящее из одной или нескольких частей (долей) единицы. Обыкновенная дробь (простая дробь) записывается в виде двух чисел (числитель дроби и знаменатель дроби), разделенных горизонтальной чертой (дробной чертой), обозначающей знак деления. числитель дроби - число, стоящее над дробной чертой. Числитель показывает, сколько долей взяли у целого. знаменатель дроби - число, стоящее под дробной чертой. Знаменатель показывает, на сколько равных долей разделено целое. простая дробь - дробь, не имеющая целой части. Простая дробь может быть правильной или неправильной. правильная дробь - дробь, у которой числитель меньше знаменателя, поэтому правильная дробь всегда меньше единицы. Пример правильных дроби: 8/7, 11/19, 16/17. неправильная дробь - дробь, у которой числитель больше или равен знаменателю, поэтому неправильная дробь всегда больше единицы или равна ей. Пример неправильных дроби: 7/6, 8/7, 13/13. смешанная дробь - число, в состав которого входит целое число и правильная дробь, и обозначает сумму этого целого числа и правильной дроби. Любая смешанная дробь может быть преобразована в неправильную простую дробь. Пример смешанных дробей: 1¼, 2½, 4¾.

    III. Примечание:

    1. Блок исходных данных выделен желтым цветом , блок промежуточных вычислений выделен голубым цветом , блок решения выделен зеленым цветом .
    2. Для сложения, вычитания, умножения и деления обыкновенных или смешанных дробей воспользуйтесь онлайн калькулятором дробей с подробным решением.

    Начальный уровень

    Преобразование выражений. Подробная теория (2019)

    Преобразование выражений

    Часто мы слышим эту неприятную фразу: «упростите выражение». Обычно при этом перед нами какое-то страшилище типа этого:

    «Да куда уж проще» - говорим мы, но такой ответ обычно не прокатывает.

    Сейчас я научу тебя не бояться никаких подобных задач. Более того, в конце занятия ты сам упростишь этот пример до (всего лишь!) обычного числа (да-да, к черту эти буквы).

    Но прежде чем приступить к этому занятию, тебе необходимо уметь обращаться с дробями и раскладывать многочлены на множители. Поэтому сперва, если ты этого не сделал раньше, обязательно освой темы « » и « ».

    Прочитал? Если да, то теперь ты готов.

    Базовые операции упрощения

    Сейчас разберем основные приемы, которые используются при упрощении выражений.

    Самый простой из них - это

    1. Приведение подобных

    Что такое подобные? Ты проходил это в 7 классе, как только впервые в математике появились буквы вместо чисел. Подобные - это слагаемые (одночлены) с одинаковой буквенной частью. Например, в сумме подобные слагаемые - это и.

    Вспомнил?

    Привести подобные - значит сложить несколько подобных слагаемых друг с другом и получить одно слагаемое.

    А как же нам сложить друг с другом буквы? - спросишь ты.

    Это очень легко понять, если представить, что буквы - это какие-то предметы. Например, буква - это стул. Тогда чему равно выражение? Два стула плюс три стула, сколько будет? Правильно, стульев: .

    А теперь попробуй такое выражение: .

    Чтобы не запутаться, пусть разные буквы обозначают разны предметы. Например, - это (как обычно) стул, а - это стол. Тогда:

    стула стола стул столов стульев стульев столов

    Числа, на которые умножаются буквы в таких слагаемых называются коэффициентами . Например, в одночлене коэффициент равен. А в он равен.

    Итак, правило приведения подобных:

    Примеры:

    Приведите подобные:

    Ответы:

    2. (и подобны, так как, следовательно у этих слагаемых одинаковая буквенная часть).

    2. Разложение на множители

    Это обычно самая важная часть в упрощении выражений. После того как ты привел подобные, чаще всего полученное выражение нужно разложить на множители, то есть представить в виде произведения. Особенно это важно в дробях: ведь чтобы можно было сократить дробь, числитель и знаменатель должны быть представлены в виде произведения.

    Подробно способы разложения выражений на множители ты проходил в теме « », поэтому здесь тебе остается только вспомнить выученное. Для этого реши несколько примеров (нужно разложить на множители):

    Решения:

    3. Сокращение дроби.

    Ну что может быть приятнее, чем зачеркнуть часть числителя и знаменателя, и выбросить их из своей жизни?

    В этом вся прелесть сокращения.

    Все просто:

    Если числитель и знаменатель содержат одинаковые множители, их можно сократить, то есть убрать из дроби.

    Это правило вытекает из основного свойства дроби:

    То есть суть операции сокращения в том, что числитель и знаменатель дроби делим на одно и то же число (или на одно и то же выражение).

    Чтобы сократить дробь, нужно:

    1) числитель и знаменатель разложить на множители

    2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

    Принцип, я думаю, понятен?

    Хочу обратить внимание на одну типичную ошибку при сокращении. Хоть эта тема и простая, но очень многие делают все неправильно, не понимая, что сократить - это значит поделить числитель и знаменатель на одно и то же число.

    Никаких сокращений, если в числителе или знаменателе сумма.

    Например: надо упростить.

    Некоторые делают так: , что абсолютно неверно.

    Еще пример: сократить.

    «Самые умные» сделают так: .

    Скажи мне, что здесь неверно? Казалось бы: - это множитель, значит можно сокращать.

    Но нет: - это множитель только одного слагаемого в числителе, но сам числитель в целом на множители не разложен.

    Вот другой пример: .

    Это выражение разложено на множители, значит, можно сократить, то есть поделить числитель и знаменатель на, а потом и на:

    Можно и сразу поделить на:

    Чтобы не допускать подобных ошибок, запомни легкий способ, как определить, разложено ли выражение на множители:

    Арифметическое действие, которое выполняется последним при подсчете значения выражения, является «главным». То есть, если ты подставишь вместо букв какие-нибудь (любые) числа, и попытаешься вычислить значение выражения, то если последним действием будет умножение - значит, у нас произведение (выражение разложено на множители). Если последним действием будет сложение или вычитание, это значит, что выражение не разложено на множители (а значит, сокращать нельзя).

    Для закрепления реши самостоятельно несколько примеров :

    Ответы:

    1. Надеюсь, ты не бросился сразу же сокращать и? Еще не хватало «сократить» единицы типа такого:

    Первым действием должно быть разложение на множители:

    4. Сложение и вычитание дробей. Приведение дробей к общему знаменателю.

    Сложение и вычитание обычных дробей - операция хорошо знакомая: ищем общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители. Давай вспомним:

    Ответы:

    1. Знаменатели и - взаимно простые, то есть у них нет общих множителей. Следовательно, НОК этих чисел равен их произведению. Это и будет общий знаменатель:

    2. Здесь общий знаменатель равен:

    3. Здесь первым делом смешанные дроби превращаем в неправильные, а дальше - по привычной схеме:

    Совсем другое дело, если дроби содержат буквы, например:

    Начнем с простого:

    a) Знаменатели не содержат букв

    Здесь все то же, что и с обычными числовыми дробями: находим общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители:

    теперь в числителе можно приводить подобные, если есть, и раскладывать на множители:

    Попробуй сам:

    b) Знаменатели содержат буквы

    Давай вспомним принцип нахождения общего знаменателя без букв:

    · в первую очередь мы определяем общие множители;

    · затем выписываем все общие множители по одному разу;

    · и домножаем их на все остальные множители, не общие.

    Чтобы определить общие множители знаменателей, сперва разложим их на простые множители:

    Подчеркнем общие множители:

    Теперь выпишем общие множители по одному разу и допишем к ним все необщие (не подчеркнутые) множители:

    Это и есть общий знаменатель.

    Вернемся к буквам. Знаменатели приводятся по точно такой же схеме:

    · раскладываем знаменатели на множители;

    · определяем общие (одинаковые) множители;

    · выписываем все общие множители по одному разу;

    · домножаем их на все остальные множители, не общие.

    Итак, по порядку:

    1) раскладываем знаменатели на множители:

    2) определяем общие (одинаковые) множители:

    3) выписываем все общие множители по одному разу и домножаем их на все остальные (неподчеркнутые) множители:

    Значит, общий знаменатель здесь. Первую дробь нужно домножить на, вторую - на:

    Кстати, есть одна хитрость:

    Например: .

    Видим в знаменателях одни и те же множители, только все с разными показателями. В общий знаменатель пойдут:

    в степени

    в степени

    в степени

    в степени.

    Усложним задание:

    Как сделать у дробей одинаковый знаменатель?

    Давай вспомним основное свойство дроби:

    Нигде не сказано, что из числителя и знаменателя дроби можно вычитать (или прибавлять) одно и то же число. Потому что это неверно!

    Убедись сам: возьми любую дробь, например, и прибавь к числителю и знаменателю какое-нибудь число, например, . Что поучилось?

    Итак, очередное незыблемое правило:

    Когда приводишь дроби к общему знаменателю, пользуйся только операцией умножения!

    Но на что же надо домножить, чтобы получить?

    Вот на и домножай. А домножай на:

    Выражения, которые невозможно разложить на множители будем называть «элементарными множителями». Например, - это элементарный множитель. - тоже. А вот - нет: он раскладывается на множители.

    Что скажешь насчет выражения? Оно элементарное?

    Нет, поскольку его можно разложить на множители:

    (о разложении на множители ты уже читал в теме « »).

    Так вот, элементарные множители, на которые ты раскладываешь выражение с буквами - это аналог простых множителей, на которые ты раскладываешь числа. И поступать с ними будем таким же образом.

    Видим, что в обоих знаменателях есть множитель. Он пойдет в общий знаменатель в степени (помнишь, почему?).

    Множитель - элементарный, и он у них не общий, значит первую дробь на него придется просто домножить:

    Еще пример:

    Решение:

    Предже, чем в панике перемножать эти знаменатели, надо подумать, как их разложить на множители? Оба они представляют :

    Отлично! Тогда:

    Еще пример:

    Решение:

    Как обычно, разложим знаменатели на множители. В первом знаменателе просто выносим за скобки; во втором - разность квадратов:

    Казалось бы, общих множителей нет. Но если присмотреться, то и так похожи… И правда:

    Так и напишем:

    То есть получилось так: внутри скобки мы поменяли местами слагаемые, и при этом знак перед дробью поменялся на противоположный. Возьми на заметку, так поступать придется часто.

    Теперь приводим к общему знаменателю:

    Усвоил? Сейчас проверим.

    Задачи для самостоятельного решения:

    Ответы:

    Тут надо вспомнить еще одну - разность кубов:

    Обрати внимание, что в знаменателе второй дроби не формула «квадрат суммы»! Квадрат суммы выглядел бы так: .

    А - это так называемый неполный квадрат суммы: второе слагаемое в нем - это произведение первого и последнего, а не удвоенное их произведение. Неполный квадрат суммы - это один из множителей в разложени разности кубов:

    Что делать, если дробей аж три штуки?

    Да то же самое! В первую очередь сделаем так, чтобы максимальное количество множителей в знаменателях было одинаковым:

    Обрати внимание: если поменять знаки внутри одной скобки, знак перед дробью меняется на противоположный. Когда меняем знаки во второй скобке, знак перед дробью снова меняется на противоположный. В результате он (знак перед дробью) не изменился.

    В общий знаменатель выписавыем полностью первый знаменатель, а потом дописываем к нему все множители, которые еще не написаны, из второго, а потом из третьего (и так далее, если дробей больше). То есть получается вот так:

    Хм… С дробями-то понятно что делать. Но вот как быть с двойкой?

    Все просто: ты ведь умеешь складывать дроби? Значит, надо сделать так, чтобы двойка стала дробью! Вспоминаем: дробь - это операция деления (числитель делится на знаменатель, если ты вдруг забыл). И нет ничего проще, чем разделить число на. При этом само число не изменится, но превратится в дробь:

    То, что нужно!

    5. Умножение и деление дробей.

    Ну что же, самое сложное теперь позади. А впереди у нас самое простое, но при этом самое важное:

    Порядок действий

    Какой порядок действий при подсчете числового выражения? Вспомни, посчитав значение такого выражения:

    Посчитал?

    Должно получиться.

    Итак, напоминаю.

    Первым делом вычисляется степень.

    Вторым - умножение и деление. Если умножений и делений одновременно несколько, делать их можно в любом порядке.

    И напоследок выполняем сложение и вычитание. Опять же, в любом порядке.

    Но: выражение в скобках вычисляется вне очереди!

    Если несколько скобок умножаются или делятся друг на друга, вычисляем сначала выражение в каждой из скобок, а потом умножаем или дели их.

    А если внутри скобок есть еще одни скобки? Ну давай подумаем: внутри скобок написано какое-то выражение. А при вычислении выражения в первую очередь надо делать что? Правильно, вычислять скобки. Ну вот и разобрались: сначала вычисляем внутренние скобки, потом все остальное.

    Итак, порядок действий для выражения выше такой (красным выделено текущее дествие, то есть действие, которое выполняю прямо сейчас):

    Хорошо, это все просто.

    Но это ведь не то же самое, что выражение с буквами?

    Нет, это то же самое! Только вместо арифметических действий надо делать алгебраические, то есть действия, описанные в предыдущем разделе: приведение подобных , сложение дробей, сокращение дробей и так далее. Единственным отличием будет действие разложения многочленов на множители (его мы часто применяем при работе с дробями). Чаще всего для разложения на множители нужно применять я или просто выносить общий множитель за скобки.

    Обычно наша цель - представить выражение в виде произведения или частного.

    Например:

    Упростим выражение.

    1) Первым упрощаем выражение в скобках. Там у нас разность дробей, а наша цель - представить ее как произведение или частное. Значит, приводим дроби к общему знаменателю и складываем:

    Больше это выражение упростить невозможно, все множители здесь - элементарные (ты еще помнишь, что это значит?).

    2) Получаем:

    Умножение дробей: что может быть проще.

    3) Теперь можно и сократить:

    Ну вот и все. Ничего сложного, правда?

    Еще пример:

    Упрости выражение.

    Сначала попробуй решить сам, и уж только потом посмотри решение.

    Перво-наперво определим порядок действий. Сначала выполним сложение дробей в скобках, получится вместо двух дробей одна. Потом выполним деление дробей. Ну и результат сложим с последней дробью. Схематически пронумерую действия:

    Теперь покажу весть процесс, подкрашивая текущее действие красным:

    Напоследок дам тебе два полезных совета:

    1. Если есть подобные, их надо немедленно привести. В какой бы момент у нас ни образовались подобные, их желательно приводить сразу.

    2. То же самое касается сокращения дробей: как только появляется возможность сократить, ей надо воспользоваться. Исключение составляют дроби, которые ты складываешь или вычитаешь: если у них сейчас одинаковые знаменатели, то сокращение нужно оставить на потом.

    Вот тебе задачи для самостоятельного решения:

    И обещанная в самом начале:

    Решения (краткие):

    Если ты справился хотя бы с первыми тремя примерами, то тему ты, считай, освоил.

    Теперь вперед к обучению!

    ПРЕОБРАЗОВАНИЕ ВЫРАЖЕНИЙ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

    Базовые операции упрощения:

    • Приведение подобных : чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и приписать буквенную часть.
    • Разложение на множители: вынесение общего множителя за скобки, применение и т.д.
    • Сокращение дроби : числитель и знаменатель дроби можно умножать или делить на одно и то же ненулевое число, от чего величина дроби не изменяется.
      1) числитель и знаменатель разложить на множители
      2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

      ВАЖНО: сокращать можно только множители!

    • Сложение и вычитание дробей:
      ;
    • Умножение и деление дробей:
      ;

    На этом уроке мы изучим основное свойство дроби, узнаем, какие дроби являются равными друг другу. Научимся сокращать дроби, определять, является ли дробь сократимой или нет, попрактикуемся в сокращении дробей и узнаем, когда стоит использовать сокращение, а когда нет.

    Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate!

    Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

    Эта информация доступна зарегистрированным пользователям

    Основное свойство дроби

    Представьте себе такую ситуацию.

    За столом 3 человека и 5 яблок. Делятся 5 яблок на троих. Каждому достается по \(\mathbf{\frac{5}{3}}\) яблока.

    А за соседним столом еще 3 человека и тоже 5 яблок. Каждому опять по \(\mathbf{\frac{5}{3}}\)

    При этом всего 10 яблок и 6 человек. Каждому по \(\mathbf{\frac{10}{6}}\)

    Но это одно и то же.

    \(\mathbf{\frac{5}{3} = \frac{10}{6}}\)

    Эти дроби эквивалентны.

    Можно увеличить в два раза количество людей и в два раза количество яблок. Результат будет тем же самым.

    В математике это формулируется так:

    Если числитель и знаменатель дроби умножить или разделить на одно и то же число (не равное 0), то новая дробь будет равна исходной .

    Это свойство иногда называют «основным свойством дроби ».

    $$\mathbf{\frac{a}{b} = \frac{a\cdot c}{b\cdot c} = \frac{a:d}{b:d}}$$

    Например, Путь от города до деревни- 14 км.

    Мы идем по дороге и определяем пройденный путь по километровым столбикам. Пройдя шесть столбиков, шесть километров, мы понимаем, что прошли \(\mathbf{\frac{6}{14}}\) пути.

    Но если мы не видим столбиков (может, их не установили), можно путь считать по электрическим столбам вдоль дороги. Их 40 штук на каждый километр. То есть всего 560 на всем пути. Шесть километров- \(\mathbf{6\cdot40 = 240}\) столбов. То есть мы прошли 240 из 560 столбов- \(\mathbf{\frac{240}{560}}\)

    \(\mathbf{\frac{6}{14} = \frac{240}{560}}\)

    Пример 1

    Отметьте точку с координатами (5; 7 ) на координатной плоскости Y . Она будет соответствовать дроби \(\mathbf{\frac{5}{7}}\)

    Соедини начало координат с получившейся точкой. Построй другую точку, которая имеет координаты в два раза больших предыдущих. Какую дробь ты получил? Будут ли они равны?

    Решение

    Дробь на координатной плоскости можно отмечать точкой. Чтобы изобразить дробь \(\mathbf{\frac{5}{7}}\), отметим точку с координатой 5 по оси Y и 7 по оси X . Проведем прямую из начала координат через нашу точку.

    На этой же прямой будет лежать и точка, соответствующая дроби \(\mathbf{\frac{10}{14}}\)

    Они являются эквивалентными: \(\mathbf{\frac{5}{7} = \frac{10}{14}}\)

    Работая с дробями, многие ученики допускают одни и те же ошибки. А все потому, что они забывают элементарные правила арифметики . Сегодня мы повторим эти правила на конкретных задачах, которые я даю на своих занятиях.

    Вот задача, которую я предлагаю каждому, кто готовится к ЕГЭ по математике:

    Задача. Морская свинья ест 150 грамм корма в день. Но она выросла и стала есть на 20% больше. Сколько грамм корма теперь ест свинья?

    Неправильное решение. Это задача на проценты, которая сводится к уравнению:

    Многие (очень многие) сокращают число 100 в числителе и знаменателе дроби:

    Вот такую ошибку допустила моя ученица прямо в день написания этой статьи. Красным отмечены числа, которые были сокращены.

    Излишне говорить, что ответ получился неправильный. Судите сами: свинья ела 150 грамм, а стала есть 3150 грамм. Увеличение не на 20%, а в 21 раз, т.е. на 2000%.

    Чтобы не допускать подобных недоразумений, помните основное правило:

    Сокращать можно только множители. Слагаемые сокращать нельзя!

    Таким образом, правильное решение предыдущей задачи выглядит так:

    Красным отмечены цифры, которые сокращаются в числителе и знаменателе. Как видите, в числителе стоит произведение, знаменателе — обыкновенное число. Поэтому сокращение вполне законно.

    Работа с пропорциями

    Еще одно проблемное место — пропорции . Особенно когда переменная стоит с обеих сторон. Например:

    Задача. Решите уравнение:

    Неправильное решение — у некоторых буквально руки чешутся сократить все на m :

    Сокращаемые переменные показаны красным. Получается выражение 1/4 = 1/5 — полный бред, эти числа никогда не равны.

    А теперь — правильное решение. По существу, это обыкновенное линейное уравнение . Решается либо переносом всех элементов в одну сторону, либо по основному свойству пропорции:

    Многие читатели возразят: «Где ошибка в первом решении?» Что ж, давайте разбираться. Вспомним правило работы с уравнениями:

    Любое уравнение можно делить и умножать на любое число, отличное от нуля .

    Просекли фишку? Можно делить только на числа, отличные от нуля . В частности, можно делить на переменную m , только если m != 0. А что делать, если все-таки m = 0? Подставим и проверим:

    Получили верное числовое равенство, т.е. m = 0 — корень уравнения. Для остальных m != 0 получаем выражение вида 1/4 = 1/5, что, естественно, неверно. Таким образом, не существует корней, отличных от нуля.

    Выводы: собираем все вместе

    Итак, для решения дробно-рациональных уравнений помните три правила:

    1. Сокращать можно только множители. Слагаемые — нельзя. Поэтому учитесь раскладывать числитель и знаменатель на множители;
    2. Основное свойство пропорции: произведение крайних элементов равно произведению средних;
    3. Уравнения можно умножать и делить только на числа k , отличные от нуля. Случай k = 0 надо проверять отдельно.

    Помните эти правила и не допускайте ошибок.

    Основано на их основном свойстве: если числитель и знаменатель дроби разделить на один и тот же ненулевой многочлен, то получится равная ей дробь.

    Сокращать можно только множители!

    Члены многочленов сокращать нельзя!

    Чтобы сократить алгебраическую дробь, многочлены, стоящие в числителе и знаменателе, нужно предварительно разложить на множители.

    Рассмотрим примеры сокращения дробей.

    В числителе и знаменателе дроби стоят одночлены. Они представляют собой произведение (чисел, переменных и их степеней), множители сокращать можем.

    Числа сокращаем на их наибольший общий делитель, то есть на наибольшее число, на которое делится каждое из данных чисел. Для 24 и 36 это — 12. После сокращения от 24 остается 2, от 36 — 3.

    Степени сокращаем на степень с наименьшим показателем. Сократить дробь — значит, разделить числитель и знаменатель на один и тот же делитель, а показатели вычитаем.

    a² и a⁷ сокращаем на a². При этом в числителе от a² остается единица (1 пишем только в том случае, когда кроме нее после сокращения других множителей не осталось. От 24 осталась 2, поэтому 1, оставшуюся от a², не пишем). От a⁷ после сокращения остается a⁵.

    b и b сокращаем на b, полученные в результате единицы не пишем.

    c³º и с⁵ сокращаем на с⁵. От c³º остается c²⁵, от с⁵ — единица (ее не пишем). Таким образом,

    Числитель и знаменатель данной алгебраической дроби — многочлены. Сокращать члены многочленов нельзя! (нельзя сократить, к примеру, 8x² и 2x!). Чтобы сократить эту дробь, надо . В числителе есть общий множитель 4x. Выносим его за скобки:

    И в числителе, и в знаменателе есть одинаковый множитель (2x-3). Сокращаем дробь на этот множитель. В числителе получили 4x, в знаменателе — 1. По 1 свойству алгебраических дробей, дробь равна 4x.

    Сокращать можно только множители (сократить данную дробь на 25x² нельзя!). Поэтому многочлены, стоящие в числителе и знаменателе дроби, нужно разложить на множители.

    В числителе — полный квадрат суммы, в знаменателе — разность квадратов. После разложения по формулам сокращенного умножения получаем:

    Сокращаем дробь на (5x+1) (для этого в числителе зачеркнем двойку в показатель степени, от (5x+1)² при этом останется (5x+1)):

    В числителе есть общий множитель 2, вынесем его за скобки. В знаменателе — формула разности кубов:

    В результате разложения в числителе и знаменателе получили одинаковый множитель (9+3a+a²). Сокращаем дробь на него:

    Многочлен в числителе состоит из 4 слагаемых. первое слагаемое со вторым, третье — с четвертым и выносим из первых скобок общий множитель x². Знаменатель раскладываем по формуле суммы кубов:

    В числителе вынесем за скобки общий множитель (x+2):

    Сокращаем дробь на (x+2):