Что такое скалярные величины. Векторная и скалярная величина — чем они отличаются

Векторная величина (вектор) – это физическая величина, которая имеет две характеристики – модуль и направление в пространстве.

Примеры векторных величин: скорость (), сила (), ускорение () и т.д.

Геометрически вектор изображается как направленный отрезок прямой линии, длина которого в масштабе – модуль вектора.

Ра́диус-ве́ктор (обычно обозначается или просто ) - вектор, задающий положения точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Для произвольной точки в пространстве, радиус-вектор - это вектор, идущий из начала координат в эту точку.

Длина радиус-вектора, или его модуль, определяет расстояние, на котором точка находится от начала координат, а стрелка указывает направление на эту точку пространства.

На плоскости углом радиус-вектора называется угол, на который радиус-вектор повёрнут относительно оси абсцисс в направлении против часовой стрелки.

линия, вдоль которой движется тело, называется траекторией движения. В зависимости от формы траектории все движения можно разделить на прямолинейные и криволинейные.

Описание движения начинается с ответа на вопрос: как изменилось положение тела в пространстве за некоторый промежуток времени? Как же определяют изменение положения тела в пространстве?

Перемещение - направленный отрезок (вектор), соединяющий начальное и конечное положение тела.

Ско́рость (часто обозначается , от англ. velocity или фр. vitesse ) - векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта (например угловая скорость). Этим же словом может называться скалярная величина, точнее модуль производной радиус-вектора.

В науке используется также скорость в широком смысле, как быстрота изменения какой-либо величины (не обязательно радиус-вектора) в зависимости от другой (чаще изменения во времени, но также в пространстве или любой другой). Так, например, говорят о скорости изменения температуры, скорости химической реакции, групповой скорости, скорости соединения, угловой скорости и т. д. Математически характеризуется производной функции.

Ускоре́ние (обычно обозначается , в теоретической механике ), производная скорости по времени - векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

Например, вблизи Земли падающее на Землю тело, в случае, когда можно пренебречь сопротивлением воздуха, увеличивает свою скорость примерно на 9,8 м/с каждую секунду, то есть, его ускорение равно 9,8 м/с².

Раздел механики, изучающий движение в трёхмерном евклидовом пространстве, его запись, а также запись скоростей и ускорений в различных системах отсчёта, называется кинематикой.

Единицей ускорения служит метр в секунду за секунду (m/s 2 , м/с 2 ), существует также внесистемная единица Гал (Gal), применяемая в гравиметрии и равная 1 см/с 2 .

Производная ускорения по времени т.е. величина, характеризующая быстроту изменения ускорения по времени называется рывок.

Наиболее простое движение тела - такое, при котором все точки тела движутся одинаково, описывая одинаковые траектории. Такое движение называется поступательным . Мы получим этот тип движения, двигая лучинку так, чтобы она все время оставалась параллельной самой себе. При поступательном движении траектории могут быть как прямыми (рис. 7, а), так и кривыми (рис. 7, б) линиями.
Можно доказать, что при поступательном движении любая прямая, проведенная в теле, остается параллельной самой себе. Этим характерным признаком удобно пользоваться, чтобы ответить на вопрос, является ли данное движение тела поступательным. Например, при качении цилиндра по плоскости прямые, пересекающие ось, не остаются параллельными самим себе: качение - это не поступательное движение. При движении рейсшины и угольника по чертежной доске любая прямая, проведенная в них, остается параллельной самой себе, значит, они движутся поступательно (рис. 8). Поступательно движется игла швейной машины, поршень в цилиндре паровой машины или двигателя внутреннего сгорания, кузов автомашины (но не колеса!) при езде по прямой дороге и т. д.

Другой простой тип движения - это вращательное движение тела, или вращение. При вращательном движении все точки тела движутся по окружностям, центры которых лежат на прямой. Эту прямую называют осью вращения (прямая 00" на рис.9). Окружности лежат в парал-лельных плоскостях, перпендикулярных к оси вращения. Точки тела, лежащие на оси вращения, остаются неподвижными. Вращение не является поступательным движением: при вращении оси OO". Показаны траектории остаются параллельными только прямые, параллельные оси вращения.

Абсолю́тно твёрдое те́ло - второй опорный объект механики наряду с материальной точкой.

Существует несколько определений:

1. Абсолютно твердое тело - модельное понятие классической механики, обозначающее совокупность материальных точек, расстояния между которыми сохраняются в процессе любых движений, совершаемых этим телом. Иначе говоря, абсолютно твердое тело не только не изменяет свою форму, но и сохраняет неизменным распределение массы внутри.

2. Абсолютно твердое тело - механическая система, обладающая только поступательными и вращательными степенями свободы. «Твёрдость» означает, что тело не может быть деформировано, то есть телу нельзя передать никакой другой энергии, кроме кинетической энергии поступательного или вращательного движения.

3. Абсолютно твёрдое тело - тело (система), взаимное положение любых точек которого не изменяется, в каких бы процессах оно ни участвовало.

В трёхмерном пространстве и в случае отсутствия связей абсолютно твёрдое тело обладает 6 степенями свободы: три поступательных и три вращательных. Исключение составляет двухатомная молекула или, на языке классической механики, твёрдый стержень нулевой толщины. Такая система имеет только две вращательных степени свободы.

Конец работы -

Эта тема принадлежит разделу:

Недоказанная и неопровергнутая гипотеза называется открытой проблемой

Физика тесно связана с математикой математика предоставляет аппарат с помощью которого физические законы могут быть точно сформулированы.. тео рия греч рассмотрение.. стандартный метод проверки теорий прямая экспериментальная проверка эксперимент критерий истины однако часто..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Принцип относительности в механике
Инерциальные системы отсчета и принцип относительности. Преобразования Галилея. Инварианты преобразования. Абсолютные и относительные скорости и ускорения. Постулаты специальной т

Вращательное движение материальной точки.
Вращательное движение материальной точки - движение материальной точки по окружности. Враща́тельное движе́ние - вид механического движения. При

Связь между векторами линейной и угловой скоростей, линейного и углового ускорений.
Мера вращательного движения: угол φ, на который поверн.тся радиус-вектор точки в плоскости, нормальной к оси вращения. Равномерное вращательное движен

Скорость и ускорение при криволинейном движении.
Криволинейное движение более сложный вид движения, чем прямолинейное, поскольку даже если движение происходит на плоскости, то изменяются две координаты, характеризующие положение тела. Скорость и

Ускорение при криволинейном движении.
Рассматривая криволинейное движение тела, мы видим, что его скорость в разные моменты различна. Даже в том случае, когда величина скорости не меняется, все же имеет место изменение направления скор

Уравнение движения Ньютона
(1) где сила F в общем случа

Центр масс
центр инерции, геометрическая точка, положение которой характеризует распределение масс в теле или механической системе. Координаты Ц. м. определяются формулами

Закон движения центра масс.
Воспользовавшись законом изменения импульса, получим закон движения центра масс: dP/dt = M∙dVc/dt = ΣFi Центр масс системы движется так же, как дв

Галилея принцип относительности
· Инерциальная система отсчёта Инерциальная система отсчёта Галилея

Пластическая деформация
Согнем немного стальную пластинку (например, ножовку), а затем через некоторое время отпустим ее. Мы увидим, что ножовка полностью (во всяком случае на взгляд) восстановит свою форму. Если возьмем

ВНЕШНИЕ И ВНУТРЕННИЕ СИЛЫ
. В механике внешними силами по отношению к данной системе материальных точек (т. е. такой совокупности материальных точек, в которой движение каждой точки зависит от положений или движений всех ос

Кинетическая энергия
энергия механической системы, зависящая от скоростей движения её точек. К. э. Т материальной точки измеряется половиной произведения массы m этой точки на квадрат её скорости

Кинетическая энергия.
Кинетическая энергия - энергия движущегося тела.(От греческого слова kinema - движение). По определению кинетическая энергия покоящегося в данной системе отсчета

Величина, равная половине произведения массы тела на квадрат его скорости.
=Дж. Кинетическая энергия - величина относительная, зависящая от выбора СО, т.к. скорость тела зависит от выбора СО. Т.о.

Момент силы
· Момент силы. Рис. Момент силы. Рис. Момент силы, величин

Кинетическая энергия вращающегося тела
Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материаль

Работа и мощность при вращении твердого тела.
Работа и мощность при вращении твердого тела. Найдем выражение для работы при вра

Основное уравнение динамики вращательного движения
Согласно уравнению (5.8) второй закон Ньютона для вращательного движения П

Физика и математика не обходятся без понятия «векторная величина». Ее необходимо знать и узнавать, а также уметь с нею оперировать. Этому обязательно стоит научиться, чтобы не путаться и не допускать глупых ошибок.

Как отличить скалярную величину от векторной?

Первая всегда имеет только одну характеристику. Это ее числовое значение. Большинство скалярных величин могут принимать как положительные, так и отрицательные значения. Их примерами может служить электрический заряд, работа или температура. Но есть такие скаляры, которые не могут быть отрицательными, например, длина и масса.

Векторная величина, кроме числовой величины, которая всегда берется по модулю, характеризуется еще и направлением. Поэтому она может быть изображена графически, то есть в виде стрелки, длина которой равна модулю величины, направленной в определенную сторону.

При письме каждая векторная величина обозначается знаком стрелки на буквой. Если идет речь о числовом значении, то стрелка не пишется или ее берут по модулю.

Какие действия чаще всего выполняются с векторами?

Сначала — сравнение. Они могут быть равными или нет. В первом случае их модули одинаковые. Но это не единственное условие. У них должны быть еще одинаковые или противоположные направления. В первом случае их следует называть равными векторами. Во втором они оказываются противоположными. Если не выполняется хотя бы одно из указанных условий, то векторы не равны.

Потом идет сложение. Его можно сделать по двум правилам: треугольника или параллелограмма. Первое предписывает откладывать сначала один вектор, потом от его конца второй. Результатом сложения будет тот, который нужно провести от начала первого к концу второго.

Правило параллелограмма можно использовать, когда нужно сложить векторные величины в физике. В отличие от первого правила, здесь их следует откладывать от одной точки. Потом достроить их до параллелограмма. Результатом действия следует считать диагональ параллелограмма, проведенную из той же точки.

Если векторная величина вычитается из другой, то они снова откладываются из одной точки. Только результатом будет вектор, который совпадает с тем, что отложен от конца второго к концу первого.

Какие векторы изучают в физике?

Их так же много, как скаляров. Можно просто запомнить то, какие векторные величины в физике существуют. Или знать признаки, по которым их можно вычислить. Тем, кто предпочитает первый вариант, пригодится такая таблица. В ней приведены основные векторные

Теперь немного подробнее о некоторых из этих величин.

Первая величина — скорость

С нее стоит начать приводить примеры векторных величин. Это обусловлено тем, что ее изучают в числе первых.

Скорость определяется как характеристика движения тела в пространстве. Ею задается числовое значение и направление. Поэтому скорость является векторной величиной. К тому же ее принято разделять на виды. Первый является линейной скоростью. Ее вводят при рассмотрении прямолинейного равномерного движения. При этом она оказывается равной отношению пути, пройденного телом, ко времени движения.

Эту же формулу допустимо использовать при неравномерном движении. Только тогда она будет являться средней. Причем интервал времени, который необходимо выбирать, обязательно должен быть как можно меньше. При стремлении промежутка времени к нулю значение скорости уже является мгновенным.

Если рассматривается произвольное движение, то здесь всегда скорость — векторная величина. Ведь ее приходится раскладывать на составляющие, направленные вдоль каждого вектора, направляющего координатные прямые. К тому же определяется он как производная радиус-вектора, взятая по времени.

Вторая величина — сила

Она определяет меру интенсивности воздействия, которое оказывается на тело со стороны других тел или полей. Поскольку сила — векторная величина, то она обязательно имеет свое значение по модулю и направление. Так как она действует на тело, то важным является еще и точка, к которой приложена сила. Чтобы получить наглядное представление о векторах сил, можно обратиться к следующей таблице.

Также еще векторной величиной является равнодействующая сила. Она определяется как сумма всех действующих на тело механических сил. Для ее определения необходимо выполнить сложение по принципу правила треугольника. Только откладывать векторы нужно по очереди от конца предыдущего. Результатом окажется тот, который соединяет начало первого с концом последнего.

Третья величина — перемещение

Во время движения тело описывает некоторую линию. Она называется траекторией. Эта линия может быть совершенно разной. Важнее оказывается не ее внешний вид, а точки начала и конца движения. Они соединяются отрезком, который называется перемещением. Это тоже векторная величина. Причем оно всегда направлено от начала перемещения к точке, где движение было прекращено. Обозначать его принято латинской буквой r.

Здесь может появиться такой вопрос: «Путь — векторная величина?». В общем случае это утверждение не является верным. Путь равен длине траектории и не имеет определенного направления. Исключением считается ситуация, когда рассматривается в одном направлении. Тогда модуль вектора перемещения совпадает по значению с путем, и направление у них оказывается одинаковым. Поэтому при рассмотрении движения вдоль прямой без изменения направления перемещения путь можно включить в примеры векторных величин.

Четвертая величина — ускорение

Оно является характеристикой быстроты изменения скорости. Причем ускорение может иметь как положительное, так и отрицательное значение. При прямолинейном движении оно направлено в сторону большей скорости. Если перемещение происходит по криволинейной траектории, то вектор его ускорения раскладывается на две составляющие, одна из которых направлена к центру кривизны по радиусу.

Выделяют среднее и мгновенное значение ускорения. Первое следует рассчитывать как отношение изменения скорости за некоторый промежуток времени к этому времени. При стремлении рассматриваемого интервала времени к нулю говорят о мгновенном ускорении.

Пятая величина — импульс

По-другому его еще называют количеством движения. Импульс векторной величиной является из-за того, что напрямую связан со скоростью и силой, приложенной к телу. Обе они имеют направление и задают его импульсу.

По определению последний равен произведению массы тела на скорость. Используя понятие импульса тела, можно по-другому записать известный закон Ньютона. Получается, что изменение импульса равно произведению силы на промежуток времени.

В физике важную роль имеет закон сохранения импульса, который утверждает, что в замкнутой системе тел ее суммарный импульс является постоянным.

Мы очень кратко перечислили, какие величины (векторные) изучаются в курсе физики.

Задача о неупругом ударе

Условие. На рельсах стоит неподвижная платформа. К ней приближается вагон со скоростью 4 м/с. и вагона - 10 и 40 тонн соответственно. Вагон ударяется о платформу, происходит автосцеп. Необходимо вычислить скорость системы "вагон-платформа" после удара.

Решение. Сначала требуется ввести обозначения: скорость вагона до удара — v 1 , вагона с платформой после сцепки — v, масса вагона m 1 , платформы — m 2 . По условию задачи необходимо узнать значение скорости v.

Правила решения подобных заданий требуют схематичного изображения системы до и после взаимодействия. Ось OX разумно направить вдоль рельсов в ту сторону, куда движется вагон.

В данных условиях систему вагонов можно считать замкнутой. Это определяется тем, что внешними силами можно пренебречь. Сила тяжести и уравновешены, а трение о рельсы не учитывается.

Согласно закону сохранения импульса, их векторная сумма до взаимодействия вагона и платформы равна общему для сцепки после удара. Сначала платформа не двигалась, поэтому ее импульс был равен нулю. Перемещался только вагон, его импульс — произведение m 1 и v 1 .

Так как удар был неупругий, то есть вагон сцепился с платформой, и дальше он стали катиться вместе в ту же сторону, то импульс системы не изменил направления. Но его значение стало другим. А именно произведением суммы массы вагона с платформой и искомой скорости.

Можно записать такое равенство: m 1 * v 1 = (m 1 + m 2) * v. Оно будет верно для проекции векторов импульсов на выбранную ось. Из него легко вывести равенство, которое потребуется для вычисления искомой скорости: v = m 1 * v 1 / (m 1 + m 2).

По правилам следует перевести значения для массы из тонн в килограммы. Поэтому при подстановке их в формулу следует сначала умножить известные величины на тысячу. Простые расчеты дают число 0,75 м/с.

Ответ. Скорость вагона с платформой равна 0,75 м/с.

Задача с разделением тела на части

Условие . Скорость летящей гранаты 20 м/с. Она разрывается на два осколка. Масса первого 1,8 кг. Он продолжает двигаться в направлении, в котором летела граната, со скоростью 50 м/с. Второй осколок имеет массу 1,2 кг. Какова его скорость?

Решение. Пусть массы осколков обозначены буквами m 1 и m 2 . Их скорости соответственно будут v 1 и v 2 . Начальная скорость гранаты — v. В задаче нужно вычислить значение v 2 .

Для того чтобы больший осколок продолжал двигаться в том же направлении, что и вся граната, второй должен полететь в обратную сторону. Если выбрать за направление оси то, которое было у начального импульса, то после разрыва большой осколок летит по оси, а маленький — против оси.

В этой задаче разрешено пользоваться законом сохранения импульса из-за того, что разрыв гранаты происходит мгновенно. Поэтому, несмотря на то что на гранату и ее части действует сила тяжести, она не успевает подействовать и изменить направление вектора импульса с его значением по модулю.

Сумма векторных величин импульса после разрыва гранаты равна тому, который был до него. Если записать закон сохранения в проекции на ось OX, то он будет выглядеть так: (m 1 + m 2) * v = m 1 * v 1 — m 2 * v 2 . Из него просто выразить искомую скорость. Она определится по формуле: v 2 = ((m 1 + m 2) * v — m 1 * v 1) / m 2 . После подстановки числовых значений и расчетов получается 25 м/с.

Ответ. Скорость маленького осколка равна 25 м/с.

Задача про выстрел под углом

Условие. На платформе массой M установлено орудие. Из него производится выстрел снарядом массой m. Он вылетает под углом α к горизонту со скоростью v (данной относительно земли). Требуется узнать значение скорости платформы после выстрела.

Решение. В этой задаче можно использовать закон сохранения импульса в проекции на ось OX. Но только в том случае, когда проекции внешних равнодействующих сил равна нулю.

За направление оси OX нужно выбрать ту сторону, куда полетит снаряд, и параллельно горизонтальной линии. В этом случае проекции сил тяжести и реакции опоры на OX будут равны нулю.

Задача будет решена в общем виде, так как нет конкретных данных для известных величин. Ответом в ней является формула.

Импульс системы до выстрела был равен нулю, поскольку платформа и снаряд были неподвижны. Пусть искомая скорость платформы будет обозначена латинской буквой u. Тогда ее импульс после выстрела определится как произведение массы на проекцию скорости. Так как платформа откатится назад (против направления оси OX), то значение импульса будет со знаком минус.

Импульс снаряда — произведение его массы на проекцию скорости на ось OX. Из-за того, что скорость направлена под углом к горизонту, ее проекция равна скорости, умноженной на косинус угла. В буквенном равенстве это будет выглядеть так: 0 = - Mu + mv * cos α. Из нее путем несложных преобразований получается формула-ответ: u = (mv * cos α) / M.

Ответ. Скорость платформы определяется по формуле u = (mv * cos α) / M.

Задача о переправе через реку

Условие. Ширина реки по всей ее длине одинакова и равна l, ее берега параллельны. Известна скорость течения воды в реке v 1 и собственная скорость катера v 2 . 1). При переправе нос катера направлен строго к противоположному берегу. На какое расстояние s его снесет вниз по течению? 2). Под каким углом α нужно направить нос катера, чтобы он достиг противоположного берега строго перпендикулярно к точке отправления? Сколько времени t потребуется на такую переправу?

Решение. 1). Полная скорость катера является векторной суммой двух величин. Первая из них течение реки, которое направлено вдоль берегов. Вторая — собственная скорость катера, перпендикулярная берегам. На чертеже получается два подобных треугольника. Первый образован шириной реки и расстоянием, на которое сносит катер. Второй — векторами скоростей.

Из них следует такая запись: s / l = v 1 / v 2 . После преобразования получается формула для искомой величины: s = l * (v 1 / v 2).

2). В этом варианте задачи вектор полной скорости перпендикулярен берегам. Он равен векторной сумме v 1 и v 2 . Синус угла, на который должен отклоняться вектор собственной скорости, равен отношению модулей v 1 и v 2 . Для расчета времени движения потребуется разделить ширину реки на сосчитанную полную скорость. Значение последней вычисляется по теореме Пифагора.

v = √(v 2 2 - v 1 2), тогда t = l / (√(v 2 2 - v 1 2)).

Ответ. 1). s = l * (v 1 / v 2), 2). sin α = v 1 / v 2 , t = l / (√(v 2 2 - v 1 2)).

Скалярные и векторные величины

  1. Векторное исчисление (например, перемещение (s),сила (F), ускорение (a), скорость (V)энергия (Е)) .

    скалярные величины, которые полностью определяются заданием их числовых значений (длина (L), площадь (S), объм (V),время (t), масса (m) и т. д.) ;

  2. Скалярные величины: температура, объм, плотность, электрический потенциал, потенциальная энергия тела (например, в поле силы тяжести) . Также модуль любого вектора (например, перечисленных ниже) .

    Векторные величины: радиус-вектор, скорость, ускорение, напряжнность электрического поля, напряжнность магнитного поля. И многие другие 🙂

  3. векторная величина имеет численное выражение и направление: скорость, ускорение, сила, электромагнитная индукция, перемещение и т. п. , а скалярная только численное выражение объем, плотность, длиа, ширина, высота, масса (не путать с весом) темпереатура
  4. векторные например скорость (v),сила (F),перемещение (s),импульс (р), энергия (Е). над каждой из этих букв ставится стрелочка-вектор. поэтому они векторные. а скалярные-это масса (m),объем (V),площадь (S),время (t),высота (h)
  5. Векторные это прямолинейные, касательные движения.
    Скалярные это замкнутые движения, которые экранируют векторные.
    Векторные движения передаются через скалярные, как через посредников, как ток передатся от атома к атому по проводнику.
  6. Скалярные величины: температура, объм, плотность, электрический потенциал, потенциальная энергия тела (например, в поле силы тяжести) . Также модуль любого вектора (например, перечисленных ниже) .

    Векторные величины: радиус-вектор, скорость, ускорение, напряжнность электрического поля, напряжнность магнитного поля. И многие другие:-

  7. Скалярная величина (скаляр) это физическая величина, которая имеет только одну характеристику численное значение.

    Скалярная величина может быть положительной или отрицательной.

    Примеры скалярных величин: масса, температура, путь, работа, время, период, частота, плотность, энергия, объем, электроемкость, напряжение, сила тока и т. д.

    Математические действия со скалярными величинами это алгебраические действия.

    Векторная величина

    Векторная величина (вектор) это физическая величина, которая имеет две характеристики модуль и направление в пространстве.

    Примеры векторных величин: скорость, сила, ускорение, напряженность и т. д.

    Геометрически вектор изображается как направленный отрезок прямой линии, длина которого в масштабе модуль вектора.

Величины, которые характеризуются числовым значением и направлением, называются векторными или векторами. НО! Одна и та же физическая величина может иметь несколько буквенных обозначений (в разной литературе). В физике существует два вида физических величин: векторные и скалярные. Такие вектора изображают направленными отрезками, имеющими одинаковые длины и направления.


Скалярная величина (от - ступлат.matuercızylarенчатый) в физике - величина, каждое значение которой может быть выражено одним действительным числом. То есть скалярная величина определяется только своим значением, в отличие от вектора, который кроме значения имеет направление. Учитывая эти соображения конкретности с соображениями краткости и удобства, можно понять, что терминологическая практика в физике заметно отличается от математической.

Этот вектор может иметь в принципе любую размерность, а как правило - бесконечномерен. Всё это позволило термину «векторный» сохранить в качестве, пожалуй, основного смысла - смысл 4-вектора. Именно этот смысл вкладывается в термины векторное поле, векторная частица (векторный бозон, векторный мезон); сопряженный смысл в подобных терминах имеет и слово скалярный.

Будем исходить из обычного трехмерного «геометрического» пространства, в котором мы живем и можем перемещаться. В качестве исходного и образцового вектора возьмем вектор бесконечно малого перемещения. Довольно очевидно, что это обычный «геометрический» вектор (как и вектор конечного перемещения).

Обозначение векторных величин

То же можно сказать о сумме и разности векторов. В этой главе мы не будем делать разницы между полярными и аксиальными векторами, поэтому заметим, что и векторное произведение двух векторов дает новый вектор.

Масса и плотность

Это можно сказать дальше и о производных всех высших порядков. Продолжая эту процедуру, мы обнаруживаем, что все известные нам векторные величины оказываются теперь не только интуитивно, но и формально, привязаны к исходному пространству. Примеры псевдовекторов: все величины, определяемые через векторное произведение двух полярных векторов. В принципе, такая формулировка используется и для квантовых теорий, и для не-квантовых.

В курсе физике часто встречаются такие величины, для описания которых достаточно знать только числовые значения. Обозначаются векторные величины соответствующими буквами со стрелкой наверху или выделяются жирным шрифтом. Два вектора называются равными, если они имеют одинаковую длину и направлены в одну сторону. При изображении на одном рисунке двух и более векторов, отрезки строят в заранее выбранном масштабе.

То, какие эти предметы, что с ними происходит, или будет происходить, если что-нибудь сделать: кинуть, разогнуть, засунуть в печь. То, почему с ними происходит что-либо и как именно происходит? Перед покупкой нового холодильника можно ознакомиться еще с рядом физических величин, которые позволяют судить о том, какой он, лучше или хуже, и почему он стоит дороже.

Второй и третий законы Ньютона

Все физические величины принято обозначать буквами, чаще греческого алфавита. Несмотря на то, что с такой буквой вы могли не сталкиваться, смысл физической величины, участие ее в формулах остается прежним. Еще одним примером такой величины может служить температура. Другие очень важные в физике величины имеют направление, это, например, скорость; мы должны задать не только быстроту перемещения тела, но и путь, по которому оно движется. Согласно тому, как в математике обозначают вектор!

Два вектора равны, если совпадают их модули и направления. Проекции вектора a на оси Ox и Oy прямоугольной системы координат. Скалярными называют величины, имеющие численное значение, но не имеющие направления. Сила, действующая на материальную точку, есть векторная величина, вектор, так как она обладает направлением.

МЕЖДУ МОЛОТОМ И НАКОВАЛЬНЕЙ.

Температура тела - скалярная величина, скаляр, так как с этой величиной не связано никакое направление. Число полученное в результате измерения характеризует скалярную величину полностью, а векторную частично. Во всех учебниках и умных книжках, силу принято выражать в Ньютонах, но кроме как в моделях которыми оперируют физики ньютоны ни где не применяются.

Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал и сила зависят только от положения тела в данный момент времени. Но нельзя обозначить оба эти явления одним и тем же выражением «сделать легче».

Изображение вектора

Векторная величина (например сила, приложенная к телу), помимо значения (модуля), характеризуется также направлением. Скалярная же величина (например, длина) характеризуется только значением. Все классические законы механики сформулированы для векторных величин. Рассмотрим опору, на которой стоят грузы. На неё действуют 3 силы: ${\large \overrightarrow{N_1},\ \overrightarrow{N_2},\ \overrightarrow{N},}$ точки приложения этих сил А, В и С соответственно.

В чем сила измеряется?

Это векторное уравнение, т.е. фактически три уравнения - по одному для каждого из трех направлений. Масса - фундаментальная физическая величина. Второй закон Ньютона связывает векторы ускорения и силы. Это означает, что справедливы следующие утверждения.

Два тела действуют друг на друга с силами, равными по модулю и противоположными по направлению. Дело в том, что варианты эти не равноценны. И это правда. Но не вся…. И применение этого знания на практике. В рассматриваемой нами системе есть 3 объекта: тягач $(T)$, полуприцеп ${\large ({p.p.})}$ и груз ${\large (gr)}$.

Эта статья о физическом понятии. В целом в физике понятие вектора практически полностью совпадает с таковым в математике. Однако есть терминологическая специфика, связанная с тем, что в современной математике это понятие несколько излишне абстрактно (по отношению к нуждам физики).

Однако она не входит с последней в явное противоречие. Всё сказанное еще в большей степени, чем к термину «вектор», относится к термину «векторная величина». Каким образом физические «векторные величины» привязаны к пространству? Также новый вектор дает дифференцирование вектора по скаляру (поскольку такая производная есть предел отношения разности векторов к скаляру). Лоренца напряженность электрического поля и вектор магнитной индукции привязаны к векторам силы и скорости.

Масса, длина, температура — это и есть физическая величина. Основное их отличие в том, что векторные физические величины имеют направление. Рисуют стрелку только над буквами векторных физических величин. Оказывается, что все 4-векторные величины «происходят» от 4-перемещения, являясь поэтому в некотором смысле такими же векторами пространства-времени, как и само 4-перемещение. Векторные величины лучше запомнить.

В математике вектор - это направленный отрезок определенной длины. В физике под векторной величиной понимают полную характеристику некоторой физической величины, которая обладает модулем и направлением действия. Рассмотрим основные свойства векторов, а также примеры физических величин, которые являются векторными.

Скаляры и вектора

Скалярные величины в физике являются параметрами, которые могут быть измерены и представлены одним числом. Например, температура, масса и объем являются скалярами, поскольку они измеряются числом градусов, килограмм и кубических метров соответственно.

В большинстве же случаев оказывается, что число, определяющее скалярную величину, не несет исчерпывающей информации. Например, рассматривая такую физическую характеристику, как ускорение, будет недостаточно сказать, что оно равно 5 м/с 2 , поскольку нужно знать, куда оно направлено, против скорости движения тела, под некоторым углом к этой скорости или иначе. Помимо ускорения, примером векторной величины в физике является скорость. Также в эту категорию входят сила, напряженность электрического поля и многое другие.

Согласно определению векторной величины как направленного в пространстве отрезка, она может быть представлена в виде набора чисел (компонент вектора), если ее рассматривать в определенной системе координат. Чаще всего в физике и математике возникают задачи, которые для описания вектора требуют знания его двух (задачи на плоскости) или трех (задачи в пространстве) компонентов.

Определение вектора в n-мерном пространстве

В n-мерном пространстве, где n - целое число, вектор будет однозначно определен, если известны его n компонент. Каждая компонента представляет собой координату конца вектора вдоль соответствующей оси координат при условии, что начало вектора находится в начале системы координат n-мерного пространства. В итоге вектор может быть представлен так: v = {a 1 , a 2 , a 3 , ..., a n }, где a 1 - скалярное значение 1-й компоненты вектора v. Соответственно, в 3-х мерном пространстве вектор запишется как v = {a 1 , a 2 , a 3 }, а в 2-х мерном - v = {a 1 , a 2 }.

Как обозначается векторная величина? Любой вектор в 1-мерном, 2-мерном и 3-мерном пространствах можно представить как направленный отрезок, лежащий между точками A и B. В этом случае он обозначается как AB → , где стрелка показывает, что речь идет о векторной величине. Последовательность букв принято указывать от начала вектора к его концу. Это означает, что если координаты точек A и B, например, в 3-мерном пространстве, равны {x 1 , y 1 , z 1 } и {x 2 , y 2 , z 2 } соответственно, тогда компоненты вектора AB → будут равны {x 2 -x 1 , y 2 -y 1 , z 2 -z 1 }.

Графическое представление вектора

На рисунках принято изображать векторную величину в виде отрезка, на его конце имеется стрелочка, указывающая направление действия физической величины, представлением которой она является. Этот отрезок обычно подписывают, например, v → или F → , чтобы было понятно, о какой характеристике идет речь.

Графическое представление вектора помогает понять, куда приложена и в каком направлении действует физическая величина. Кроме того, многие математические операции над векторами удобно совершать, используя их изображения.

Математические операции над векторами

Векторные величины, так же как и обычные числа, можно складывать, вычитать и умножать как друг с другом, так и с другими числами.

Под суммой двух векторов понимают третий вектор, который получается, если суммируемые параметры расположить так, чтобы конец первого совпадал с началом второго вектора, а затем, соединить начало первого и конец второго. Для выполнения этого математического действия разработаны три основных метода:

  1. Метод параллелограмма, заключающийся в построении геометрической фигуры на двух векторах, которые выходят из одной и той же точки пространства. Диагональ этого параллелограмма, которая выходит из общей точки начала векторов, будет являться их суммой.
  2. Метод многоугольника, суть которого состоит в том, что начало каждого последующего вектора следует располагать в конце предыдущего, тогда суммарный вектор будет соединять начало первого и конец последнего.
  3. Аналитический метод, который состоит в попарном сложении соответствующих компонент известных векторов.

Что касается разницы векторных величин, то ее можно заменить сложением первого параметра с тем, который противоположен по направлению второму.

Умножение вектора на некоторое число A выполняется по простому правилу: на это число следует умножить каждую компоненту вектора. В результате получается также вектор, модуль которого в A раз больше исходного, а направление либо совпадает, либо противоположно исходному, все зависит от знака числа A.

Делить вектор или число на него нельзя, а вот деление вектора на число A аналогично умножению на число 1/A.

Скалярное и векторное произведения

Умножение векторов можно выполнять двумя различными способами: скалярно и векторно.

Скалярным произведением векторных величин называется такой способ их умножения, результатом которого является одно число, то есть скаляр. В матричном виде скалярное произведение записывается как строки компонента 1-го вектора на столбец компонент 2-го. В итоге в n-мерном пространстве получается формула: (A → *B →) = a 1 *b 1 +a 2 *b 2 +...+a n *b n .

В 3-мерном пространстве можно определить скалярное произведение иначе. Для этого нужно умножить модули соответствующих векторов на косинус угла между ними, то есть (A → *B →) = |A → |*|B → |*cos(θ AB). Из этой формулы следует, что если вектора направлены в одном направлении, то скалярное произведение равно умножению их модулей, а если вектора перпендикулярны друг другу, тогда оно оказывается равным нулю. Отметим, что модуль вектора в прямоугольной системе координат определяется как квадратный корень от суммы квадратов компонент этого вектора.

Под векторным произведением понимают такое умножение вектора на вектор, результатом которого также является вектор. Его направление оказывается перпендикулярно каждому из умножаемых параметров, а длина равна произведению модулей векторов на синус угла между ними, то есть A → x B → = |A → |*|B → |*sin(θ AB), где значок "x" обозначает векторное произведение. В матричном виде этот вид произведения представляется как определитель, строками которого являются элементарные вектора данной системы координат и компоненты каждого вектора.

Как скалярное, так и векторное произведения используют в математике и физике для определения многих величин, например, площади и объема фигур.

Скорость и ускорение

Под скоростью в физике понимают быстроту изменения местоположения данной материальной точки. Измеряется скорость в системе СИ в метрах в секунду (м/с), а обозначается символом v → . Под ускорением понимают быстроту изменения скорости. Ускорение измеряется в метрах в квадратную секунду (м/с 2), а обозначается обычно символом a → . Значение 1 м/с 2 говорит о том, что за каждую секунду тело увеличивает свою скорость на 1 м/с.

Скорость и ускорение - это векторные величины, которые участвуют в формулах второго закона Ньютона и перемещения тела как материальной точки. Скорость всегда направлена вдоль направления движения, ускорение же может быть направлено произвольным образом относительно движущегося тела.

Физическая величина сила

Сила - векторная физическая величина, которая отражает интенсивность взаимодействия между телами. Обозначается она символом F → , измеряется в ньютонах (Н). По определению, 1 Н - это сила, способная за каждую секунду времени изменять скорость тела, имеющего массу 1 кг, на 1 м/с.

Эта физическая величина широко применяется в физике, поскольку с ней связаны энергетические характеристики процессов взаимодействия. Природа силы может быть самой разной, например, гравитационные силы планет, сила, которая заставляет двигаться автомобиль, упругие силы твердых сред, электрические силы, описывающие поведение электрических зарядов, магнитные, ядерные силы, которые обуславливают стабильность атомных ядер, и так далее.

Векторная величина давление

С понятием силы тесно связана другая величина - давление. Под ним в физике понимают нормальную проекцию силы на площадку, на которую она действует. Поскольку сила является вектором, то, согласно правилу умножения числа на вектор, давление также будет векторной величиной: P → = F → /S, где S - площадь. Давление измеряется в паскалях (Па), 1 Па - это параметр, при котором перпендикулярная сила в 1 Н действует на поверхность площадью 1 м 2 . Исходя из определения, вектор давления направлен в том же направлении, что и вектор силы.

В физике понятие давления часто используется при изучении явлений в жидкостях и газах (например, закон Паскаля или уравнение состояния идеального газа). Давление тесно связано с температурой тела, поскольку кинетическая энергия атомов и молекул, представлением которой является температура, объясняет природу существования самого давления.

Напряженность электрического поля

Вокруг любого заряженного тела существует электрическое поле, силовой характеристикой которого является его напряженность. Определяется эта напряженность как сила, действующая в данной точке электрического поля на единичный заряд, помещенный в эту точку. Обозначается напряженность электрического поля буквой E → и измеряется в ньютонах на кулон (Н/Кл). Вектор напряженности направлен вдоль силовой линии электрического поля в ее направлении, если заряд положительный, и против нее, если заряд отрицательный.

Напряженность электрического поля, создаваемого точечным зарядом, можно определить в любой точке, используя закон Кулона.

Магнитная индукция

Магнитное поле, как показали в XIX веке ученые Максвелл и Фарадей, тесно связано с электрическим полем. Так, изменяющееся электрическое поле порождает магнитное, и наоборот. Поэтому оба вида полей описываются в рамках электромагнитных физических явлений.

Магнитная индукция описывает силовые свойства магнитного поля. Магнитная индукция - величина скалярная или векторная? Понять это можно, зная, что она определяется через силу F → , действующую на заряд q, который пролетает со скоростью v → в магнитном поле, согласно следующей формуле: F → = q*|v → x B → |, где B → - магнитная индукция. Таким образом, отвечая на вопрос, величина скалярная или векторная - магнитная индукция, можно сказать, что это вектор, который направлен от северного магнитного полюса к южному. Измеряется B → в теслах (Тл).

Физическая величина кандела

Еще одним примером векторной величины является кандела, которая вводится в физику через световой поток, измеряемый в люменах, проходящий через поверхность, ограниченную углом в 1 стерадиан. Кандела отражает яркость света, поскольку показывает плотность светового потока.