Урок "степень с целым показателем".

СТЕПЕНЬ С РАЦИОНАЛЬНЫМ ПОКАЗАТЕЛЕМ,

СТЕПЕННАЯ ФУНКЦИЯ IV

§ 72. Свойства степеней с целыми показателями

В § 68 и 69 мы доказали следующие свойства степеней с натуральными показателями;

Все эти свойства оказываются справедливыми и для степеней с любыми целыми (положительными, отрицательными и нулевыми) показателями, если только числа а и b не равны нулю.

Докажем, например, что при а =/= 0

а m а n = а m+n , (1)

где т и п - любые целые числа.

Поскольку для натуральных чисел т и п формула (1) уже доказана, то нам остается рассмотреть лишь следующие три случая: 1) числа т и п отрицательны; 2) одно из чисел т и п положительно, а другое - отрицательно; 3) хотя бы одно из чисел т и п равно нулю.

Случай 1. Пусть т и п - отрицательные числа. Тогда по определению степени с отрицательным показателем

Так как т и п отрицательны, то - m и - п положительны. Поэтому

а - m а - n = а - m - n = а -( m+ n)

Значит, . Используя определение степени с отрицательным показателем, запишем:

Следовательно,

а m а n = а m+n

Случай 2. Один из показателей т и п положителен, а другой - отрицателен. Пусть, например, т > 0, а п < 0. По определению степени с отрицательным показателем

Число - п положительно; значит, по доказанному в § 71

Случай 3. Хотя бы один из показателей т и п равен нулю. Пусть, например, т = 0. Тогда по определению нулевой степени

а m а n = а 0 а n = = 1 а n = а n ,

но а m+n = а 0+n = а n . Значит, формула

а m а n = а m+n

верна и в этом случае.

Таким образом, при а =/= 0 формула

а m а n = а m+n

верна для любых целых чисел т и п .

Аналогично могут быть доказаны и остальные четыре свойства степеней с целыми показателями, упомянутые в начале этого параграфа.

Примеры, 1) 4 - 5 4 8 = 4 3 = 64;

2) (3 2) - 4 = 3 - 8 = 1 / 6561

3) [(1 / 5) - 2 ] 3 = (5 - 1) - 2 ] 3 = 3 = 5 6 = 15 625.

В заключение отметим еще два свойства степеней с целыми показателями (заучивать эти свойства не нужно).

6) Если a > b > 0 и п отрицательно, то а n < b n , то есть из двух степеней с положительными основаниями и одинаковыми отрицательными показателями больше та, основание которой меньше .

Например,

5 - 3 < 4 - 3 (1 / 125 < 1 / 64); (1 / 3) - 2 > (1 / 2) - 2 (9 > 4)

7) Если 0 < а < 1, то из двух степеней а m и а n больше та, показатель которой меньше .

Если а >1, то из двух степеней а m и а n больше та, показатель которой больше .

Под т и п здесь подразумеваются любые целые числа, а не только натуральные.

Например,

(1 / 2) - 5 > (1 / 2) - 4 или 32 > 16

2 - 5 <2 - 4 , или 1 / 32 < 1 / 16 и т. д.

Предлагаем учащимся доказать эти свойства самостоятельно.

Упражнения

532. Вычислить:

533. Какое число больше:

а) 5 - 63 или 5 - 64 ; в) 5 - 63 или (1 / 5) - 63

б) 5 - 63 или 6 - 63 ; г) (1 / 5) 63 или 5 - 63 ?

534. Упростить выражение

и найти его числовое значение при

a = - 4, b = - 1 / 2

535. При каком показателе п степень а n не зависит от основания а ?

Муниципальное казенное образовательное учреждение

«Теляковская средняя общеобразовательная школа»

Ясногорского района Тульской области

Урок по теме

«Свойства степени с целым показателем»

8 класс

Учитель математики

первой квалификационной категории

Кучабо Ю.Б.

2015 г.

Свойства степени с целым показателем

Тип урока: урок изучения и первичного закрепления новых знаний.

Цель: организовать деятельность обучающихся по изучению свойств степени с целым показателем и применению их при вычислениях и преобразованиях.

Задачи: - формировать потребность приобретения новых знаний, развивать

познавательные процессы, мышление, память, воображение, самостоятельность;

создать ситуацию успеха для каждого с помощью разноуровневой

самостоятельной работы;

Развивать навыки самоконтроля и самооценки;

Воспитывать уважение друг к другу, уверенность в себе, честность,

корректировать самооценку; развивать математическую речь.

Структура урока:

1) Мотивационная беседа, самоопределение к деятельности.

2) Актуализация знаний и фиксация затруднений в деятельности.

3) Постановка учебной задачи. Практическая работа с доказательством свойств степени с целым показателем.

4) Первичное закрепление. Эстафета.

5) Диагностика усвоения. (Разноуровневая самостоятельная работа).

6) Домашнее задание.

7) Итог. Рефлексия

Ход урока:

    Мотивационная беседа. Самоопределение к деятельности. (2 минуты)

Здравствуйте. Сегодня на уроке мы изучаем тему «Свойства степени с целым показателем». Подумайте, что нужно знать для ее изучения? Что необходимо вспомнить, повторить, к чему мы должны прийти в конце урока, каких целей достичь? Правильно. Итак, цель нашего урока: изучить свойства степени с целым показателем и научиться применять эти свойства. Для этого мы должны выполнить следующие задачи: вы вспомните свойства степени с натуральным показателем и докажите справедливость этих свойств для степени с целым показателем. Вы призовете на помощь свое воображение, внимание, сообразительность и станете еще умнее. В ходе урока вы ведете листки «Самоконтроля» и, как обычно, отмечаете степень своего участия в общей деятельности. На прошлом уроке мы познакомились с определением степени с целым показателем. Давайте вспомним теорию. Ответьте на вопросы:

1). Сформулируйте определение степени числа с натуральным показателем.

Определение. Степенью числа а с натуральным показателем п, большим 1, называется произведение п множителей, каждый из которых равен а.

2). Каким числом (положительным или отрицательным) является:

Степень положительного числа? (положительным)

Степень отрицательного числа с четным показателем? (положительным)

Степень отрицательного числа с нечетным показателем? (отрицательным)

3). Сформулируйте определение степени с целым отрицательным показателем. Определение. Если a 0 и n – целое отрицательное число, то .

    Актуализация знаний и фиксация затруднений в деятельности. (5 минут)

Теперь вспомните, пожалуйста, свойства степени с натуральным показателем. Чтобы вы быстрее вспомнили, смотрите на доску и работайте по подсказкам.

1) Сформулируйте правило умножения степеней с одинаковыми основаниями.

1 свойство : (на доске)

При умножении степеней с одинаковыми основаниями основание оставляют тем же, а показатели степеней складывают.

2) Сформулируйте правило деления степеней с одинаковыми основаниями.

2 свойство: (на доске)

При делении степеней с одинаковыми основаниями основание оставляют тем же, а из показателя степени делимого вычитают показатель степени делителя.

3) Сформулируйте правило возведения степени в степень.

3 свойство : (на доске)

При возведении степени в степень основание оставляют прежним, а показатели перемножают.

4) Сформулируйте правило возведения в степень произведения.

4 свойство : (на доске)

При возведении в степень произведения возводят в эту степень каждый множитель и результаты перемножают.

5) Сформулируйте правило возведения в степень дроби.

5 свойство : , где в 0. (на доске)

При возведении дроби в степень возводят в эту степень отдельно числитель и отдельно знаменатель и записывают в виде дроби.

6) Чему равна степень с нулевым показателем?

6 свойство: а 0 =1, где а ≠ 0. (на доске)

Степень числа а, не равного нулю, с нулевым показателем равна единице.

Вычислительные задания.

1. Вычислить: -3+2; -7-3; -8-(-4); 3∙(-6); -2∙(-8)

2. Упростить выражения:

а) 3 2 · 3; б) 2 10 : 2 6 ; в) (2 2 ) 3 ; г) (5а 2 ) 2

Не забывайте оценивать свою деятельность в листах самооценки.

3) Постановка учебной задачи. Практическая работа с доказательством свойств степени с целым показателем (5 минут)

Объяснение нового материала.

Мы повторили понятие степени с натуральным показателем, а теперь давайте докажем что рассмотренные свойства справедливы и для степени с любым целым показателем, нужно только предполагать что основание степени не равно нулю.

Итак, для любого ≠0 и любых целых m и n

= (1)

: = (2)

= (3)

И для любых ≠0 и ≠0 и целого m

(4)

(5)

Эти свойства можно доказать исходя из определения степени с отрицательным показателем, и свойства степени с натуральным показателем. Докажем справедливость свойства (1) (основного свойства степени).

Где ≠0 , k и p - натуральные числа.

Сейчас проведем небольшую практическую работу. Доказательство свойства (4) проведите сами, заменяя степени дробями, воспользовавшись определением степени с целым отрицательным показателем. Затем проверьте правильность практической работы, сверившись с доской, и оцените свою деятельность.

    Первичное закрепление. (10 минут)

а) Из свойств степени вытекает, что действия над степенями с целым показателем выполняются по тем же правилам, что и действия над степенями с натуральным показателем.

Рассмотрим примеры. Решите их сами, сверьтесь с доской, исправьте ошибки (если они есть) и оцените свою деятельность.

1). 5а -15 · 0,4а 23

2). 7,5 с 7 : 3 с -5

3). (3а 2 с -3 ) -2

4). 16 2 : (2 3 ) 2

Если у многих учащихся есть ошибки, учитель разъясняет материал еще раз на других аналогичных примерах (возможно, из учебника).

б) Эстафета. Обучающиеся выполняют первое задание, его ответ – одновременно номер следующего примера, и т.д. Ответ последнего задания сообщается учителю. Затем следует проверка.

1). ·

2). ·

3). : 16

4). ·

5). :

Решение:

1). · = = 5

5). : = = 2

2). · = = 3

3). : 16 = = 4

4). · = = =1

Физ. минутка.

Если вы устали, чувствуете упадок сил, не выспались надо подзарядиться энергией. Сядьте прямо, не горбитесь, сомкните вместе колени и ступни ног, замкните руки в замок, закройте глаза и дышите носом глубоко и равномерно. Сосредоточьтесь на звуке биения своего сердца – ощутите эту вибрацию во всем теле. Вскоре вы почувствуете, что ритм вашего дыхания почти совпадает с ритмом биения сердца. Наслаждайтесь этой вибрацией, дышите глубоко и спокойно, слушайте мелодию, которую поют ваше сердце и дыхание. Теперь откройте глаза, встаньте, распрямите плечи и глубоко вдохните. Чувствуете? Все тело налилось такой силой, что сегодня никакие препятствия не смогут стать помехой в ваших делах! Вы полны энергии и здоровья!

5) Диагностика усвоения. (15 минут)

Помним важное правило обучения. Люди сохраняют в памяти:

    10% того, что читали;

    20% того, что слышали;

    30%, того, что видели;

    50% того, что слышали и видели;

    70% того, что слышали, видели и обсуждали;

    80% того, что говорили сами;

    90% того, что делали сами.

Поэтому, используя изученные свойства степени, выполняем самостоятельную работу. Работаем по вариантам с последующей взаимопроверкой и самопроверкой. Юля выполняет задания I варианта, затем закрывает свою тетрадь и смотрит на решение этих заданий на доске. Запоминает правильное решение, открывает тетрадь, исправляет свои возможные ошибки и оценивает свою деятельность. (Правильное решение на доске уже закрыто). Кристина, Сережа и Валера решают II вариант. Затем обмениваются тетрадями, проверяют работы друг друга и выставляют оценки карандашом в тетради и ручкой в листки самоконтроля. Кристина проверяет работу Валеры, Валера – Сережи, Сережа – Кристины.

I вариант II вариант

1 Вычислите: № 1 Вычислите:

а) 5 -15 · 5 12 а) 3 -4 · 3 6

б) 9 -5 · 27 3 б) 10 8 · 10 -5

в) 10 0 : 10 -5 в) 4 -8 : 4 -9

г) 8 -2 : 4 -4 г) 6 -3 : 6 -3

д) (3 2 ) -3 · 27 2 д) (5 2 ) -2 · 5 3

2 Упростите выражение: № 2 Упростите выражение:

а) (0,5х -4 у -3 ) 2 · 4 х -2 у 3 а) 1,5 ас -3 · 4 а -2 с

б) (5а 3 с 2 ) -2 · 10 а 5 с -3 б) 0,6 х -2 у 4 · 0,5 х 3 у -2

в) (х -7 у 2 ) -2 · (х 2 у -3 ) -3 в) (0,5х -4 у -3 ) 2 · 4 х -2 у 3

г) г)

д) д)

6) Домашнее задание . (4 минуты)

Сдайте, пожалуйста, самостоятельную работу и листки самоконтроля. Откройте учебники на стр. 118. Еще раз прочитайте свойства степени с целым показателем и примеры их применения в тексте пункта 40. Теперь запишите домашнее задание: п. 40, № 986, № 999. Посмотрите на № 986. Как вы будете его выполнять? Какие свойства степени примените? А при выполнении № 999? Внимательно посмотрите, если что-то непонятно, задавайте вопросы.

7) Рефлексия. Итог урока. (4 минуты)

Подумайте, что нового вы узнали на уроке? Достигли ли цели урока? Каковы причины затруднений и ошибок? Какую цель поставим себе на следующий урок?

Всем спасибо за работу на уроке, вы сегодня молодцы. Урок окончен, до свидания.

Необходимый материал к уроку:

презентация,

карточки с заданиями для самостоятельной работы,

листки самоконтроля.

Пример листка самоконтроля.

Инструкция: в ходе урока отмечайте степень вашего участия в деятельности по шкале 1) – списал, но не понял (слушал, но не отвечал) – 2 балла, 2) – списал и разобрался – 3 балла, 3) – решал сам, но ошибся (ответил на устный вопрос) – 4 балла, 4) – решил сам без ошибок – 5 баллов. Самостоятельная работа оценивается так: из 10 заданий правильно выполнены 9 или 10 – отметка 5, 7 или 8 – 4, 5 или 6 – 3, меньше 5 – 2 балла.

Виды деятельности

Баллы

Ответы на устные вопросы

Практическая работа

Закрепление

Самостоятельная работа

Итог урока

Решение (для презентации)

Вычислительные задания.

    Вычислить: -3+2; -7-3; -8-(-4); 3∙(-6); -2∙(-8).

2. Упростить выражения:

а) 3 2 · 3; б) 2 10 : 2 6 ; в) (2 2 ) 3 ; г) (5а 2 ) 2

Решение: а) 3 2 · 3 = 3 3 =27; б) 2 10 : 2 6 = 2 4 = 16 ; в) (2 2 ) 3 = 2 6 = 64 ; г) (5а 2 ) 2 = 5 2 а 2·2 =25а 4

Первичное закрепление :

1). 5а -15 · 0,4а 23 = 2а -15+23 = 2а 8

2). 7,5с 7 : 3с -5 = 2,5с 7-(-5) =2,5 с 12

3). (3а 2 с -3 ) -2 = 3 -2 · (а 2 ) -2 · (с -3 ) -2 = а -4 с 6

4). 16 2 : (2 3 ) 2 = (2 4 ) 2 : 2 3·2 = 2 8 : 2 6 = 2 2 = 4

Эстафета:

1). ·

2). ·

3). : 16

4). ·

5). :

Решение:

1). · = = 5

5). : = = 2

2). · = = 3

3). : 16 = = 4

4). · = = =1

Самостоятельная работа:

I вариант

1 Вычислите:

а) 5 -15 · 5 12 = 5 -3 =

б) 9 -5 · 27 3 = (3 2 ) -5 · (3 3 ) 3 = 3 -10 · 3 9 =3 -1 =

Возведение числа в натуральную степень означает его непосредственное повторение собственным сомножителем в раз. Число, повторяющееся в качестве сомножителя - это основание степени, а число, указывающее на количество одинаковых множителей, называют показателем степени. Полученный результат выполненных действий и есть степень. Например, три в шестой степени означает повторение числа три в виде множителя шесть раз.

Основанием степени может выступать любое число, отличное от нуля.

Вторая и третья имеют специальные названия. Это, соответственно, квадрат и куб.

За первую степень числа принимают само же это число.

Для положительных чисел также определена степень, имеющая рациональный показатель. Как всем известно, любое записывается в виде дроби, числитель которой является целым, знаменатель же - натуральным, то есть целым положительным, отличным от единицы.

Степень с рациональным показателем представляет из себя корень степени, равной знаменателю показателя степени, а подкоренное выражение - это основание степени, возведенное в степень, равную числителю. Например: три в 4/5 равно корню пятой степени из трех в четвертой.

Отметим некоторые свойства, вытекающие непосредственно из рассматриваемого определения:

  • любое положительное число в рациональной степени - положительно;
  • значение степени с рациональным показателем не зависит от формы его записи;
  • если основание отрицательное, то рациональная степень этого числа не определена.

При положительном основании свойства степени верны независимо от показателя.

Свойства степени с натуральным показателем:

1. Умножая степени, имеющие одинаковые основания, основание оставляют без изменения и складывают показатели. Например: при умножении трех в пятой степени на три в седьмой получают три в двенадцатой степени (5+7=12) .

2. При делении степеней, имеющих одинаковые основания, их оставляют без изменения, а показатели вычитывают. Например: при делении трех в восьмой на три в пятой степени получают три в квадрате (8-5=3).

3. Когда основание оставляют без изменения, а показатели перемножают. Например: при возведении 3 в пятой в седьмую получают 3 в тридцать пятой (5х7=35).

4. Чтобы возвести произведение в степень, в ту же возводится каждый из множителей. Например: при возведении произведения 2х3 в пятую получают произведение два в пятой на три в пятой.

5. Чтобы возвести дробь в степень, в ту же степень возводят числитель и знаменатель. Например: при возведении 2/5 в пятую получают дробь, в числителе которой - два в пятой, в знаменателе - пять в пятой.

Отмеченные свойства степени справедливы и для дробных показателей.

Свойства степени с рациональным показателем

Введем некоторые определения. Любое отличное от 0 возведенное в нулевую, равно единице.

Любое отличное от 0 действительное число, возведенное в степень с отрицательным целым показателем - это дробь с числителем единица и знаменателем, равным степени того же числа, но имеющего противоположный показатель.

Дополним свойства степени несколькими новыми, которые касаются рациональных показателей.

Степень с рациональным показателем не меняется при умножении или делении числителя и знаменателя его показателя на неравное нулю одно и то же число.

При основании больше единицы:

  • если показатель положительный, то степень больше 1;
  • при отрицательном - меньше единицы.

При основании меньше единицы, наоборот:

  • если показатель положительный, то степень меньше единицы;
  • при отрицательном - больше 1.

Когда показатель степени растет, то:

  • растет сама степень, если основание больше единицы;
  • убывает, если основание меньше единицы.

Основная цель

Ознакомить учащихся со свойствами степеней с натуральными показателями и научить выполнять действия со степенями.

Тема “ Степень и её свойства ” включает три вопроса:

  • Определение степени с натуральным показателем.
  • Умножение и деление степеней.
  • Возведение в степень произведения и степени.

Контрольные вопросы

  1. Сформулируйте определение степени с натуральным показателем, большим 1. Приведите пример.
  2. Сформулируйте определение степени с показателем 1. Приведите пример.
  3. Каков порядок выполнения действий при вычислении значения выражения, содержащего степени?
  4. Сформулируйте основное свойство степени. Приведите пример.
  5. Сформулируйте правило умножения степеней с одинаковыми основаниями. Приведите пример.
  6. Сформулируйте правило деления степеней с одинаковыми основаниями. Приведите пример.
  7. Сформулируйте правило возведения в степень произведения. Приведите пример. Докажите тождество (ab) n = a n b n .
  8. Сформулируйте правило возведения степени в степень. Приведите пример. Докажите тождество (а m) n = а m n .

Определение степени.

Степенью числа a с натуральным показателем n , большим 1, называется произведение n множителей, каждый из которых равен а . Степенью числа а с показателем 1 называется само число а .

Степень с основанием а и показателем n записывается так: а n . Читается “ а в степени n ”; “ n- я степень числа а ”.

По определению степени:

а 4 = а а а а

. . . . . . . . . . . .

Нахождение значения степени называют возведением в степень .

1. Примеры возведения в степень:

3 3 = 3 3 3 = 27

0 4 = 0 0 0 0 = 0

(-5) 3 = (-5) (-5) (-5) = -125

25 ; 0,09 ;

25 = 5 2 ; 0,09 = (0,3) 2 ; .

27 ; 0,001 ; 8 .

27 = 3 3 ; 0,001 = (0,1) 3 ; 8 = 2 3 .

4. Найти значения выражений:

а) 3 10 3 = 3 10 10 10 = 3 1000 = 3000

б) -2 4 + (-3) 2 = 7
2 4 = 16
(-3) 2 = 9
-16 + 9 = 7

Вариант 1

а) 0,3 0,3 0,3

в) b b b b b b b

г) (-х) (-х) (-х) (-х)

д) (ab) (ab) (ab)

2. Представьте в виде квадрата числа:

3. Представьте в виде куба числа:

4. Найти значения выражений:

в) -1 4 + (-2) 3

г) -4 3 + (-3) 2

д) 100 - 5 2 4

Умножение степеней.

Для любого числа а и произвольных чисел m и n выполняется:

a m a n = a m + n .

Доказательство:

Правило : При умножении степеней с одинаковыми основаниями основания оставляют прежним, а показатели степеней складывают.

a m a n a k = a m + n a k = a (m + n) + k = a m + n + k

а) х 5 х 4 = х 5 + 4 = х 9

б) y y 6 = y 1 y 6 = y 1 + 6 = y 7

в) b 2 b 5 b 4 = b 2 + 5 + 4 = b 11

г) 3 4 9 = 3 4 3 2 = 3 6

д) 0,01 0,1 3 = 0,1 2 0,1 3 = 0,1 5

а) 2 3 2 = 2 4 = 16

б) 3 2 3 5 = 3 7 = 2187

Вариант 1

1. Представить в виде степени:

а) х 3 х 4 е) х 2 х 3 х 4

б) а 6 а 2 ж) 3 3 9

в) у 4 у з) 7 4 49

г) а а 8 и) 16 2 7

д) 2 3 2 4 к) 0,3 3 0,09

2. Представить в виде степени и найти значение по таблице:

а) 2 2 2 3 в) 8 2 5

б) 3 4 3 2 г) 27 243

Деление степеней.

Для любого числа а0 и произвольных натуральных чисел m и n, таких, что m>n выполняется:

a m: a n = a m - n

Доказательство:

a m - n a n = a (m - n) + n = a m - n + n = a m

по определению частного:

a m: a n = a m - n .

Правило : При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.

Определение: Степень числа а, не равного нулю, с нулевым показателем равна единице :

т.к. а n: a n = 1 при а0 .

а) х 4:х 2 = х 4 - 2 = х 2

б) у 8:у 3 = у 8 - 3 = у 5

в) а 7:а = а 7:а 1 = а 7 - 1 = а 6

г) с 5:с 0 = с 5:1 = с 5

а) 5 7:5 5 = 5 2 = 25

б) 10 20:10 17 = 10 3 = 1000

в)

г)

д)

Вариант 1

1. Представьте в виде степени частное:

2. Найдите значения выражений:

Возведение в степень произведения.

Для любых а и b и произвольного натурального числа n:

(ab) n = a n b n

Доказательство:

По определению степени

(ab) n =

Сгруппировав отдельно множители а и множители b, получим:

=

Доказанное свойство степени произведения распространяется на степень произведения трех и более множителей.

Например:

(a b c) n = a n b n c n ;

(a b c d) n = a n b n c n d n .

Правило : При возведении в степень произведения возводят в эту степень каждый множитель и результат перемножают.

1. Возвести в степень:

а) (a b) 4 = a 4 b 4

б) (2 х у) 3 =2 3 х 3 у 3 = 8 х 3 у 3

в) (3 а) 4 = 3 4 а 4 = 81 а 4

г) (-5 у) 3 = (-5) 3 у 3 = -125 у 3

д) (-0,2 х у) 2 = (-0,2) 2 х 2 у 2 = 0,04 х 2 у 2

е) (-3 a b c) 4 = (-3) 4 a 4 b 4 c 4 = 81 a 4 b 4 c 4

2. Найти значение выражения:

а) (2 10) 4 = 2 4 10 4 = 16 1000 = 16000

б) (3 5 20) 2 = 3 2 100 2 = 9 10000= 90000

в) 2 4 5 4 = (2 5) 4 = 10 4 = 10000

г) 0,25 11 4 11 = (0,25 4) 11 = 1 11 = 1

д)

Вариант 1

1. Возвести в степень:

б) (2 а с) 4

д) (-0,1 х у) 3

2. Найти значение выражения:

б) (5 7 20) 2

Возведение в степень степени.

Для любого числа а и произвольных натуральных чисел m и n:

(а m) n = а m n

Доказательство:

По определению степени

(а m) n =

Правило: При возведении степени в степень основание оставляют тем же, а показатели перемножают .

1. Возвести в степень:

(а 3) 2 = а 6 (х 5) 4 = х 20

(у 5) 2 = у 10 (b 3) 3 = b 9

2. Упростите выражения:

а) а 3 (а 2) 5 = а 3 а 10 = а 13

б) (b 3) 2 b 7 = b 6 b 7 = b 13

в) (х 3) 2 (х 2) 4 = х 6 х 8 = х 14

г) (у у 7) 3 = (у 8) 3 = у 24

а)

б)

Вариант 1

1. Возвести в степень:

а) (а 4) 2 б) (х 4) 5

в) (у 3) 2 г) (b 4) 4

2. Упростите выражения:

а) а 4 (а 3) 2

б) (b 4) 3 b 5+

в) (х 2) 4 (х 4) 3

г) (у у 9) 2

3. Найдите значение выражений:

Приложение

Определение степени.

Вариант 2

1ю Запишите произведение в виде степени:

а) 0,4 0,4 0,4

в) а а а а а а а а

г) (-у) (-у) (-у) (-у)

д) (bс) (bс) (bс)

2. Представьте в виде квадрата числа:

3. Представьте в виде куба числа:

4. Найти значения выражений:

в) -1 3 + (-2) 4

г) -6 2 + (-3) 2

д) 4 5 2 – 100

Вариант 3

1. Запишите произведение в виде степени:

а) 0,5 0,5 0,5

в) с с с с с с с с с

г) (-х) (-х) (-х) (-х)

д) (ab) (ab) (ab)

2. Представьте в виде квадрата числа: 100 ; 0,49 ; .

3. Представьте в виде куба числа:

4. Найти значения выражений:

в) -1 5 + (-3) 2

г) -5 3 + (-4) 2

д) 5 4 2 - 100

Вариант 4

1. Запишите произведение в виде степени:

а) 0,7 0,7 0,7

в) х х х х х х

г) (-а) (-а) (-а)

д) (bс) (bс) (bс) (bc)

2. Представьте в виде квадрата числа:

3. Представьте в виде куба числа:

4. Найти значения выражений:

в) -1 4 + (-3) 3

г) -3 4 + (-5) 2

д) 100 - 3 2 5

Умножение степеней.

Вариант 2

1. Представить в виде степени:

а) х 4 x 5 е) х 3 х 4 х 5

б) а 7 а 3 ж) 2 3 4

в) у 5 у з) 4 3 16

г) а а 7 и) 4 2 5

д) 2 2 2 5 к) 0,2 3 0,04

2. Представить в виде степени и найти значение по таблице:

а) 3 2 3 3 в) 16 2 3

б) 2 4 2 5 г) 9 81

Вариант 3

1. Представить в виде степени:

а) а 3 а 5 е) у 2 у 4 у 6

б) х 4 х 7 ж) 3 5 9

в) b 6 b з) 5 3 25

г) у у 8 и) 49 7 4

д) 2 3 2 6 к) 0,3 4 0,27

2. Представить в виде степени и найти значение по таблице:

а) 3 3 3 4 в) 27 3 4

б) 2 4 2 6 г) 16 64

Вариант 4

1. Представить в виде степени:

а) а 6 а 2 е) х 4 х х 6

б) х 7 х 8 ж) 3 4 27

в) у 6 у з) 4 3 16

г) х х 10 и) 36 6 3

д) 2 4 2 5 к) 0,2 2 0,008

2. Представить в виде степени и найти значение по таблице:

а) 2 6 2 3 в) 64 2 4

б) 3 5 3 2 г) 81 27

Деление степеней.

Вариант 2

1. Представьте в виде степени частное:

2. Найдите значения выражений.

Ранее мы уже говорили о том, что такое степень числа. Она имеет определенные свойства, полезные в решении задач: именно их и все возможные показатели степени мы разберем в этой статье. Также мы наглядно покажем на примерах, как их можно доказать и правильно применить на практике.

Yandex.RTB R-A-339285-1

Вспомним уже сформулированное нами ранее понятие степени с натуральным показателем: это произведение n -ного количества множителей, каждый из которых равен а. Также нам понадобится вспомнить, как правильно умножать действительные числа. Все это поможет нам сформулировать для степени с натуральным показателем следующие свойства:

Определение 1

1. Главное свойство степени: a m · a n = a m + n

Можно обобщить до: a n 1 · a n 2 · … · a n k = a n 1 + n 2 + … + n k .

2. Свойство частного для степеней, имеющих одинаковые основания: a m: a n = a m − n

3. Свойство степени произведения: (a · b) n = a n · b n

Равенство можно расширить до: (a 1 · a 2 · … · a k) n = a 1 n · a 2 n · … · a k n

4. Свойство частного в натуральной степени: (a: b) n = a n: b n

5. Возводим степень в степень: (a m) n = a m · n ,

Можно обобщить до: (((a n 1) n 2) …) n k = a n 1 · n 2 · … · n k

6. Сравниваем степень с нулем:

  • если a > 0 , то при любом натуральном n, a n будет больше нуля;
  • при a , равном 0 , a n также будет равна нулю;
  • при a < 0 и таком показателе степени, который будет четным числом 2 · m , a 2 · m будет больше нуля;
  • при a < 0 и таком показателе степени, который будет нечетным числом 2 · m − 1 , a 2 · m − 1 будет меньше нуля.

7. Равенство a n < b n будет справедливо для любого натурального n при условии, что a и b больше нуля и не равны друг другу.

8. Неравенство a m > a n будет верным при условии, что m и n – натуральные числа, m больше n и а больше нуля и меньше единицы.

В итоге мы получили несколько равенств; если соблюсти все условия, указанные выше, то они будут тождественными. Для каждого из равенств, например, для основного свойства, можно поменять местами правую и левую часть: a m · a n = a m + n - то же самое, что и a m + n = a m · a n . В таком виде оно часто используется при упрощении выражений.

1. Начнем с основного свойства степени: равенство a m · a n = a m + n будет верным при любых натуральных m и n и действительном a . Как доказать это утверждение?

Основное определение степеней с натуральными показателями позволит нам преобразовать равенство в произведение множителей. Мы получим запись такого вида:

Это можно сократить до (вспомним основные свойства умножения). В итоге мы получили степень числа a с натуральным показателем m + n . Таким образом, a m + n , значит, основное свойство степени доказано.

Разберем конкретный пример, подтверждающий это.

Пример 1

Итак, у нас есть две степени с основанием 2 . Их натуральные показатели - 2 и 3 соответственно. У нас получилось равенство: 2 2 · 2 3 = 2 2 + 3 = 2 5 Вычислим значения, чтобы проверить верность этого равенства.

Выполним необходимые математические действия: 2 2 · 2 3 = (2 · 2) · (2 · 2 · 2) = 4 · 8 = 32 и 2 5 = 2 · 2 · 2 · 2 · 2 = 32

В итоге у нас вышло: 2 2 · 2 3 = 2 5 . Свойство доказано.

В силу свойств умножения мы можем выполнить обобщение свойства, сформулировав его в виде трех и большего числа степеней, у которых показатели являются натуральными числами, а основания одинаковы. Если обозначить количество натуральных чисел n 1 , n 2 и др. буквой k , мы получим верное равенство:

a n 1 · a n 2 · … · a n k = a n 1 + n 2 + … + n k .

Пример 2

2. Далее нам необходимо доказать следующее свойство, которое называется свойством частного и присуще степеням с одинаковыми основаниями: это равенство a m: a n = a m − n , которое справедливо при любых натуральным m и n (причем m больше n)) и любом отличном от нуля действительном a .

Для начала поясним, каков именно смысл условий, которые упомянуты в формулировке. Если мы возьмем a, равное нулю, то в итоге у нас получится деление на нуль, чего делать нельзя (ведь 0 n = 0). Условие, чтобы число m обязательно было больше n , нужно для того, чтобы мы могли удержаться в рамках натуральных показателей степени: вычтя n из m , мы получим натуральное число. Если условие не будет соблюдено, у нас получится отрицательное число или ноль, и опять же мы выйдем за пределы изучения степеней с натуральными показателями.

Теперь мы можем перейти к доказательству. Из ранее изученного вспомним основные свойства дробей и сформулируем равенство так:

a m − n · a n = a (m − n) + n = a m

Из него можно вывести: a m − n · a n = a m

Вспомним про связь деления и умножения. Из него следует, что a m − n – частное степеней a m и a n . Это и есть доказательство второго свойства степени.

Пример 3

Подставим конкретные числа для наглядности в показатели, а основание степени обозначим π : π 5: π 2 = π 5 − 3 = π 3

3. Следующим мы разберем свойство степени произведения: (a · b) n = a n · b n при любых действительных a и b и натуральном n .

Согласно базовому определению степени с натуральным показателем мы можем переформулировать равенство так:

Вспомнив свойства умножения, запишем: . Это значит то же самое, что и a n · b n .

Пример 4

2 3 · - 4 2 5 4 = 2 3 4 · - 4 2 5 4

Если множителей у нас три и больше, то это свойство также распространяется и на этот случай. Введем для числа множителей обозначение k и запишем:

(a 1 · a 2 · … · a k) n = a 1 n · a 2 n · … · a k n

Пример 5

С конкретными числами получим следующее верное равенство: (2 · (- 2 , 3) · a) 7 = 2 7 · (- 2 , 3) 7 · a

4. После этого мы попробуем доказать свойство частного: (a: b) n = a n: b n при любых действительных a и b , если b не равно 0 , а n – натуральное число.

Для доказательства можно использовать предыдущее свойство степени. Если (a: b) n · b n = ((a: b) · b) n = a n , а (a: b) n · b n = a n , то из этого выходит, что (a: b) n есть частное от деления a n на b n .

Пример 6

Подсчитаем пример: 3 1 2: - 0 . 5 3 = 3 1 2 3: (- 0 , 5) 3

Пример 7

Начнем сразу с примера: (5 2) 3 = 5 2 · 3 = 5 6

А теперь сформулируем цепочку равенств, которая докажет нам верность равенства:

Если у нас в примере есть степени степеней, то это свойство справедливо для них также. Если у нас есть любые натуральные числа p , q , r , s , то верно будет:

a p q y s = a p · q · y · s

Пример 8

Добавим конкретики: (((5 , 2) 3) 2) 5 = (5 , 2) 3 + 2 + 5 = (5 , 2) 10

6. Еще одно свойство степеней с натуральным показателем, которое нам нужно доказать, – свойство сравнения.

Для начала сравним степень с нулем. Почему a n > 0 при условии, что а больше 0 ?

Если умножить одно положительное число на другое, то мы получим также положительное число. Зная этот факт, мы можем сказать, что от числа множителей это не зависит – результат умножения любого числа положительных чисел есть число положительное. А что же такое степень, как не результат умножения чисел? Тогда для любой степени a n с положительным основанием и натуральным показателем это будет верно.

Пример 9

3 5 > 0 , (0 , 00201) 2 > 0 и 34 9 13 51 > 0

Также очевидно, что степень с основанием, равным нулю, сама есть ноль. В какую бы степень мы не возводили ноль, он останется им.

Пример 10

0 3 = 0 и 0 762 = 0

Если основание степени – отрицательное число, тот тут доказательство немного сложнее, поскольку важным становится понятие четности/нечетности показателя. Возьмем для начала случай, когда показатель степени четный, и обозначим его 2 · m , где m – натуральное число.

Вспомним, как правильно умножать отрицательные числа: произведение a · a равно произведению модулей, а, следовательно, оно будет положительным числом. Тогда и степень a 2 · m также положительны.

Пример 11

Например, (− 6) 4 > 0 , (− 2 , 2) 12 > 0 и - 2 9 6 > 0

А если показатель степени с отрицательным основанием – нечетное число? Обозначим его 2 · m − 1 .

Тогда

Все произведения a · a , согласно свойствам умножения, положительны, их произведение тоже. Но если мы его умножим на единственное оставшееся число a , то конечный результат будет отрицателен.

Тогда получим: (− 5) 3 < 0 , (− 0 , 003) 17 < 0 и - 1 1 102 9 < 0

Как это доказать?

a n < b n – неравенство, представляющее собой произведение левых и правых частей nверных неравенств a < b . Вспомним основные свойства неравенств справедливо и a n < b n .

Пример 12

Например, верны неравенства: 3 7 < (2 , 2) 7 и 3 5 11 124 > (0 , 75) 124

8. Нам осталось доказать последнее свойство: если у нас есть две степени, основания которых одинаковы и положительны, а показатели являются натуральными числами, то та из них больше, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше.

Докажем эти утверждения.

Для начала нам нужно убедиться, что a m < a n при условии, что m больше, чем n , и а больше 0 , но меньше 1 .Теперь сравним с нулем разность a m − a n

Вынесем a n за скобки, после чего наша разность примет вид a n · (a m − n − 1) . Ее результат будет отрицателен (поскольку отрицателен результат умножения положительного числа на отрицательное). Ведь согласно начальным условиям, m − n > 0 , тогда a m − n − 1 –отрицательно, а первый множитель положителен, как и любая натуральная степень с положительным основанием.

У нас вышло, что a m − a n < 0 и a m < a n . Свойство доказано.

Осталось привести доказательство второй части утверждения, сформулированного выше: a m > a справедливо при m > n и a > 1 . Укажем разность и вынесем a n за скобки: (a m − n − 1) .Степень a n при а, большем единицы, даст положительный результат; а сама разность также окажется положительна в силу изначальных условий, и при a > 1 степень a m − n больше единицы. Выходит, a m − a n > 0 и a m > a n , что нам и требовалось доказать.

Пример 13

Пример с конкретными числами: 3 7 > 3 2

Основные свойства степеней с целыми показателями

Для степеней с целыми положительными показателями свойства будут аналогичны, потому что целые положительные числа являются натуральными, а значит, все равенства, доказанные выше, справедливы и для них. Также они подходят и для случаев, когда показатели отрицательны или равны нулю (при условии, что само основание степени ненулевое).

Таким образом, свойства степеней такие же для любых оснований a и b (при условии, что эти числа действительны и не равны 0) и любых показателей m и n (при условии, что они являются целыми числами). Запишем их кратко в виде формул:

Определение 2

1. a m · a n = a m + n

2. a m: a n = a m − n

3. (a · b) n = a n · b n

4. (a: b) n = a n: b n

5. (a m) n = a m · n

6. a n < b n и a − n > b − n при условии целого положительного n , положительных a и b , a < b

7. a m < a n , при условии целых m и n , m > n и 0 < a < 1 , при a > 1 a m > a n .

Если основание степени равно нулю, то записи a m и a n имеют смысл только лишь в случае натуральных и положительных m и n . В итоге получим, что формулировки выше подходят и для случаев со степенью с нулевым основанием, если соблюдаются все остальные условия.

Доказательства этих свойств в данном случае несложные. Нам потребуется вспомнить, что такое степень с натуральным и целым показателем, а также свойства действий с действительными числами.

Разберем свойство степени в степени и докажем, что оно верно и для целых положительных, и для целых неположительных чисел. Начнем с доказательства равенств (a p) q = a p · q , (a − p) q = a (− p) · q , (a p) − q = a p · (− q) и (a − p) − q = a (− p) · (− q)

Условия: p = 0 или натуральное число; q – аналогично.

Если значения p и q больше 0 , то у нас получится (a p) q = a p · q . Схожее равенство мы уже доказывали раньше. Если p = 0 , то:

(a 0) q = 1 q = 1 a 0 · q = a 0 = 1

Следовательно, (a 0) q = a 0 · q

Для q = 0 все точно так же:

(a p) 0 = 1 a p · 0 = a 0 = 1

Итог: (a p) 0 = a p · 0 .

Если же оба показателя нулевые, то (a 0) 0 = 1 0 = 1 и a 0 · 0 = a 0 = 1 , значит, (a 0) 0 = a 0 · 0 .

Вспомним доказанное выше свойство частного в степени и запишем:

1 a p q = 1 q a p q

Если 1 p = 1 · 1 · … · 1 = 1 и a p q = a p · q , то 1 q a p q = 1 a p · q

Эту запись мы можем преобразовать в силу основных правил умножения в a (− p) · q .

Так же: a p - q = 1 (a p) q = 1 a p · q = a - (p · q) = a p · (- q) .

И (a - p) - q = 1 a p - q = (a p) q = a p · q = a (- p) · (- q)

Остальные свойства степени можно доказать аналогичным образом, преобразовав имеющиеся неравенства. Подробно останавливаться мы на этом не будем, укажем только сложные моменты.

Доказательство предпоследнего свойства: вспомним, a − n > b − n верно для любых целых отрицательных значений nи любых положительных a и b при условии, что a меньше b .

Тогда неравенство можно преобразовать следующим образом:

1 a n > 1 b n

Запишем правую и левую части в виде разности и выполним необходимые преобразования:

1 a n - 1 b n = b n - a n a n · b n

Вспомним, что в условии a меньше b , тогда, согласно определению степени с натуральным показателем: - a n < b n , в итоге: b n − a n > 0 .

a n · b n в итоге дает положительное число, поскольку его множители положительны. В итоге мы имеем дробь b n - a n a n · b n , которая в итоге также дает положительный результат. Отсюда 1 a n > 1 b n откуда a − n > b − n , что нам и нужно было доказать.

Последнее свойство степеней с целыми показателями доказывается аналогично свойству степеней с показателями натуральными.

Основные свойства степеней с рациональными показателями

В предыдущих статьях мы разбирали, что такое степень с рациональным (дробным) показателем. Их свойства такие же, что и у степеней с целыми показателями. Запишем:

Определение 3

1. a m 1 n 1 · a m 2 n 2 = a m 1 n 1 + m 2 n 2 при a > 0 , а если m 1 n 1 > 0 и m 2 n 2 > 0 , то при a ≥ 0 (свойство произведения степеней с одинаковыми основаниями).

2. a m 1 n 1: b m 2 n 2 = a m 1 n 1 - m 2 n 2 , если a > 0 (свойство частного).

3. a · b m n = a m n · b m n при a > 0 и b > 0 , а если m 1 n 1 > 0 и m 2 n 2 > 0 , то при a ≥ 0 и (или) b ≥ 0 (свойство произведения в дробной степени).

4. a: b m n = a m n: b m n при a > 0 и b > 0 , а если m n > 0 , то при a ≥ 0 и b > 0 (свойство частного в дробной степени).

5. a m 1 n 1 m 2 n 2 = a m 1 n 1 · m 2 n 2 при a > 0 , а если m 1 n 1 > 0 и m 2 n 2 > 0 , то при a ≥ 0 (свойство степени в степени).

6. a p < b p при условии любых положительных a и b , a < b и рациональном p при p > 0 ; если p < 0 - a p > b p (свойство сравнения степеней с равными рациональными показателями).

7. a p < a q при условии рациональных чисел p и q , p > q при 0 < a < 1 ; если a > 0 – a p > a q

Для доказательства указанных положений нам понадобится вспомнить, что такое степень с дробным показателем, каковы свойства арифметического корня n -ной степени и каковы свойства степени с целыми показателем. Разберем каждое свойство.

Согласно тому, что из себя представляет степень с дробным показателем, получим:

a m 1 n 1 = a m 1 n 1 и a m 2 n 2 = a m 2 n 2 , следовательно, a m 1 n 1 · a m 2 n 2 = a m 1 n 1 · a m 2 n 2

Свойства корня позволят нам вывести равенства:

a m 1 · m 2 n 1 · n 2 · a m 2 · m 1 n 2 · n 1 = a m 1 · n 2 · a m 2 · n 1 n 1 · n 2

Из этого получаем: a m 1 · n 2 · a m 2 · n 1 n 1 · n 2 = a m 1 · n 2 + m 2 · n 1 n 1 · n 2

Преобразуем:

a m 1 · n 2 · a m 2 · n 1 n 1 · n 2 = a m 1 · n 2 + m 2 · n 1 n 1 · n 2

Показатель степени можно записать в виде:

m 1 · n 2 + m 2 · n 1 n 1 · n 2 = m 1 · n 2 n 1 · n 2 + m 2 · n 1 n 1 · n 2 = m 1 n 1 + m 2 n 2

Это и есть доказательство. Второе свойство доказывается абсолютно так же. Запишем цепочку равенств:

a m 1 n 1: a m 2 n 2 = a m 1 n 1: a m 2 n 2 = a m 1 · n 2: a m 2 · n 1 n 1 · n 2 = = a m 1 · n 2 - m 2 · n 1 n 1 · n 2 = a m 1 · n 2 - m 2 · n 1 n 1 · n 2 = a m 1 · n 2 n 1 · n 2 - m 2 · n 1 n 1 · n 2 = a m 1 n 1 - m 2 n 2

Доказательства остальных равенств:

a · b m n = (a · b) m n = a m · b m n = a m n · b m n = a m n · b m n ; (a: b) m n = (a: b) m n = a m: b m n = = a m n: b m n = a m n: b m n ; a m 1 n 1 m 2 n 2 = a m 1 n 1 m 2 n 2 = a m 1 n 1 m 2 n 2 = = a m 1 m 2 n 1 n 2 = a m 1 · m 2 n 1 n 2 = = a m 1 · m 2 n 2 · n 1 = a m 1 · m 2 n 2 · n 1 = a m 1 n 1 · m 2 n 2

Следующее свойство: докажем, что для любых значений a и b больше 0 , если а меньше b , будет выполняться a p < b p , а для p больше 0 - a p > b p

Представим рациональное число p как m n . При этом m –целое число, n –натуральное. Тогда условия p < 0 и p > 0 будут распространяться на m < 0 и m > 0 . При m > 0 и a < b имеем (согласно свойству степени с целым положительным показателем), что должно выполняться неравенство a m < b m .

Используем свойство корней и выведем: a m n < b m n

Учитывая положительность значений a и b , перепишем неравенство как a m n < b m n . Оно эквивалентно a p < b p .

Таким же образом при m < 0 имеем a a m > b m , получаем a m n > b m n значит, a m n > b m n и a p > b p .

Нам осталось привести доказательство последнего свойства. Докажем, что для рациональных чисел p и q , p > q при 0 < a < 1 a p < a q , а при a > 0 будет верно a p > a q .

Рациональные числа p и q можно привести к общему знаменателю и получить дроби m 1 n и m 2 n

Здесь m 1 и m 2 – целые числа, а n – натуральное. Если p > q , то m 1 > m 2 (учитывая правило сравнения дробей). Тогда при 0 < a < 1 будет верно a m 1 < a m 2 , а при a > 1 – неравенство a 1 m > a 2 m .

Их можно переписать в следующем виде:

a m 1 n < a m 2 n a m 1 n > a m 2 n

Тогда можно сделать преобразования и получить в итоге:

a m 1 n < a m 2 n a m 1 n > a m 2 n

Подводим итог: при p > q и 0 < a < 1 верно a p < a q , а при a > 0 – a p > a q .

Основные свойства степеней с иррациональными показателями

На такую степень можно распространить все описанные выше свойства, которыми обладает степень с рациональными показателями. Это следует из самого ее определения, которое мы давали в одной из предыдущих статей. Сформулируем кратко эти свойства (условия: a > 0 , b > 0 , показатели p и q – иррациональные числа):

Определение 4

1. a p · a q = a p + q

2. a p: a q = a p − q

3. (a · b) p = a p · b p

4. (a: b) p = a p: b p

5. (a p) q = a p · q

6. a p < b p верно при любых положительных a и b , если a < b и p – иррациональное число больше 0 ; если p меньше 0 , то a p > b p

7. a p < a q верно, если p и q – иррациональные числа, p < q , 0 < a < 1 ; если a > 0 , то a p > a q .

Таким образом, все степени, показатели которых p и q являются действительными числами, при условии a > 0 обладают теми же свойствами.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter