Электронная схема плавного пуска электродвигателя. Плавный пуск асинхронного электродвигателя с короткозамкнутым ротором

Поскольку в последнее время очень широко распространилось применение асинхронного двигателя , в связи с его простотой, надежностью и небольшой ценой. Это стало причиной его широкого применения в промышленности. С целью улучшения его характеристик и продления срока работы, имеется большое число различных приспособлений, способных к регулировке, старту, либо защите движка. Вот об одном из них я и расскажу в этой статье.

Этим устройством является устройство плавного пуска электродвигателя (сокращенно УПП), иначе называемое софт-стартером, несмотря на то, что это название можно использовать к любым приспособлениям, способным выполнить плавный старт движка.

УПП асинхронных двигателей современного типа сменяет собой все прежние методы, вроде старта способом «переключение звезда-треугольник», либо пуска при помощи реостата. Необходимо иметь ввиду тот факт, что способ этот не дешев, следовательно, использование его должно быть оправдано. Само собой разумеется, что стоимость устройства сильно зависит от требуемой мощности, стартового функционала и защитных свойств и колеблется от 2 до 10 тысяч рублей, а иногда и более.

Принцип действия

Во время старта мотора, появляется немалый пусковой момент (вследствие необходимости преодоления нагрузочного момента на валу).

Для создания этого момента, двигатели забирают из сети большое количество энергии, что является одной из пусковых проблем – просадкой напряжения.

Этот фактор может плохо повлиять на других потребителей энергии, находящихся в этой сети. Еще одним неприятным фактором является возможность повреждение механических частей привода вследствие резкого пускового рывка.

Другую проблему при запуске создают немалые стартовые токи. Такие токи, при протекании по обмоткам мотора, выделяют очень много тепла, создавая опасность повреждения изоляции обмоток и выхода из строя двигателя в результате виткового замыкания.

Вот для избавления от всех подобных проявлений отрицательного характера во время старта двигателя и применяют УПП, позволяющее уменьшить токи старта, в результате чего значительно уменьшить просадки напряжения и, как следствие, нагрев обмоток.

Снижая стартовые токи, мы снижаем пусковой момент, в результате чего происходит смягчение ударов во время пуска и, как следствие, сохранение механических деталей привода. Весьма немалым плюсом УПП следует считать то, что при запуске нет рывков, а ускорение плавное.

По внешнему виду такое устройство представляет из себя прямоугольной формы модуль со средними размерами, имеющий контакты, к которым подключают мотор и цепи управления. Некоторые из таких устройств имеют ЖК-экран, индикаторы и кнопки, которые позволяют задавать разные пусковые режимы, выполнять съем показаний, ограничение тока и т.д. Кроме того, устройства оснащаются сетевым разъемом, при помощи которого выполняют его программирование и обмен данными.

Хотя эти устройства и именуются устройствами плавного пуска электродвигателя, но позволяют они выполнять не только старт, но и остановку движка. Помимо этого, в них имеется всевозможный защитный функционал, такой как, например, защита от КЗ, тепловая защита, контроль пропадания фаз, превышения токов пуска и изменения питающего напряжения. Помимо этого, в устройствах имеется память, в которую записываются возникающие ошибки. Следовательно, при помощи сетевого разъема, можно произвести их считывание и расшифровку.

Реализация плавного старта двигателей с использованием этих устройств происходит посредством медленного подъема напряжения (при этом мотор плавно разгоняется) и уменьшения токов запуска. Параметры, которые при этом подлежат регулировке, это, как правило, первичное напряжение, разгонное время и время остановки. Делать первичное напряжение слишком маленьким не выгодно, т.к. при этом значительно снижается момент пуска, по этой причине он устанавливается в пределах 0.3-0.6 от номинала.
При старте напряжение быстро поднимается до выставленного заранее напряжения старта, после чего, в течение установленного разгонного времени, медленно увеличивается до номинала. Движок в это время плавно, но быстро разгоняется до необходимой скорости.

Сейчас такие устройства изготавливают многие предприятия (в основном зарубежные). Функций у них много и их можно программировать. Однако, при всем этом, у них есть один большой минус – достаточно большая стоимость. Но есть возможность создания подобного устройства и своими руками, тогда оно будет стоить значительно дешевле.

Устройство плавного пуска электродвигателя своими руками

Приведу одну из возможных схем подобного устройства. Основой для построения такого устройства может стать регулятор мощности фазового типа, выполненный в виде микросхемы КР1182ПМ1. В этой схеме их установлено три (на каждую фазу свой). Схема представлена на рисунке ниже.

Данная схема предназначена для работы с двигателем 380в*50гц. Обмотки мотора соединены в «звезду» и подключены на выходные цепи схемы (они имеют обозначения L11, L2, L3). Общая точка обмоток движка цепляется на вывод сетевой нейтрали (N). Цепи выхода выполнены на встречно-параллельных парах тиристоров импортного производства, имеющих при малой цене достаточно высокие показатели.

Питание на схему приходит после того, как замкнется главный выключатель g1. Но, движок еще не запускается. Причина этому – обесточенные обмотки релюх к1-к3, вследствие чего, выводы 3 и 6 микросхем оказываются зашунтированными их нормально-закрытыми контактами (через сопротивления r1-r3). В результате этого, емкости с1-с3 не заряжаются, а микросхемы не вырабатывают импульсы управления.

Запуск схемы выполняется путем замыкания тумблера sa1. Это приводит к подаче напряжения 12 вольт на обмотки реле, что, в свою очередь, дает возможность заряда конденсаторов и, как следствие, увеличения угла открывания тиристоров. С помощью этого достигается плавный подъем напряжения обмоток двигателя. При достижении полного заряда конденсаторов, тиристоры откроются на наибольший угол, чем будет достигнута номинальная частота вращения движка.

Чтобы отключить двигатель, достаточно разомкнуть контакты sa1, что заставит отключиться релюхи и процесс пойдет в обратном направлении, обеспечив торможение двигателя.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Устройство плавного пуска ABB PSR-25-600

Всем привет! Сегодня будет статья, в которой показан реальный пример использования устройства плавного пуска (мягкого пускателя) на практике. Плавный пуск электродвигателя установлен мною на реальном устройстве, приводятся фото и схемы.

Что это за устройство, я ранее подробно рассказывал . Напоминаю, что мягкий пускатель и устройство плавного пуска суть одно и то же устройство. Названия эти берутся от английского Soft Starter. В статье я буду называть этот блок и так, и эдак, привыкайте). Информации по устройствам плавного пуска в интернете достаточно, рекомендую также почитать .

Моё мнение по пуску асинхронных двигателей, подтвержденное многолетними наблюдениями и практикой. При мощности двигателя более 4 кВт стоит подумать, чтобы обеспечить плавный разгон двигателя. Это нужно при тяжелой, инерционной нагрузке, которая как раз и подключается на вал такого двигателя. Если двигатель используется с редуктором, то ситуация полегче.

Простейший и самый дешевый вариант плавного пуска – вариант с включением двигателя через схему “Звезда-Треугольник”. Более “плавные” и гибкие варианты – устройство плавного пуска и преобразователь частоты (в народе – “частотник”). Есть ещё древний способ, который уже почти не применяется – .

Кстати, верный признак того, что двигатель питается через частотник – хорошо слышимый писк с частотой около 8 кГц, особенно на низких оборотах.

Я уже использовал устройство плавного пуска от Schneider Electric, был такой положительный опыт в моей деятельности. Тогда нужно было плавно включать/выключать длинный круговой конвейер с заготовками (двигатель 2,2 кВт с редуктором). Жаль, что фотоаппарата тогда не было под рукой. Но в этот раз всё рассмотрим очень детально!

Зачем понадобился плавный пуск двигателя

Итак, проблема - на котельной есть насосы подпитки котла водой. Всего два насоса, и включаются они по команде от системы слежения за уровнем воды в котле. Одновременно может работать только один насос, выбор насоса осуществляет оператор котельной путем переключения водяных кранов и электрических переключателей.

Насосы приводятся в действие обычными асинхронными двигателями. Асинхронные двигатели 7,5 кВт через обычные контакторы (). А поскольку мощность большая, то пуск очень жесткий. Каждый раз при пуске возникает ощутимый гидроудар. Портятся и сами двигатели, и насосы, и гидросистема. Иногда такое ощущение, что трубы и краны сейчас разлетятся вдребезги.

Кроме того, когда котёл остывший, и в него резко подается горячая вода (так надо по технологии, около 95 °С), то происходят неприятные явления, напоминающие взрывообразное бурление.

Всего на котельной два идентичных котла, но во втором установлены частотники на насосы. Котлы (точнее, парогенераторы) вырабатывают пар с температурой более 115 °С и давлением до 14 кгс/см2.

Жаль, что конструкцией котла в электросхеме не предусмотрено было плавное включение двигателей насоса. Хотя котлы итальянские, на этом было решено сэкономить…

Повторюсь, что для плавного включения асинхронных двигателей мы имеем на выбор такие варианты:

  • схема «звезда-треугольник»
  • система плавного пуска (мягкий пуск)
  • частотный преобразователь (инвертор)

В данном случае необходимо было выбрать тот вариант, при котором бы было минимальное вмешательство в рабочую схему управления котлом.

Дело в том, что любые изменения в работе котла должны быть обязательно согласованы с производителем котла (либо сертифицированной организацией) и с надзорной организацией. Поэтому изменения должны быть внесены незаметно и без лишнего шума. Хотя, в систему безопасности я не вмешиваюсь, поэтому тут не так строго.

Мои постоянные читатели знают, что теперь, после , я имею полное право выполнять работы по КИПиА в котельной.

Выбор устройства плавного пуска

Для начала посмотрим на шильдик двигателя:

Мощность двигателя – 7,5 кВт, обмотки соединены в схему “треугольник”, номинальный потребляемый при этом ток – 14,7А.

Вот как выглядела система пуска (“жёсткая”):

Напоминаю, что у нас два двигателя, и запускаются они контакторами 07КМ1 и 07КМ2. Контакторы снабжены блоками дополнительных контактов – для индикации и контроля включения.

В качестве альтернативы было выбрано устройство плавного пуска ABB PSR-25-600. Его максимальный ток – 25 Ампер, так что запас у нас хороший. Особенно, если учесть, что работать придётся в тяжелых условиях – количество пусков/стопов, высокая температура. Фото – в начале статьи.

Вот наклейка на софтстартере с параметрами:

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Soft Starter ABB PSR-25-600 – параметры

  • FLA – Full Load Amps – значение силы тока при полной нагрузке – почти 25А,
  • Uc – рабочее напряжение,
  • Us – напряжение цепи управления.

Установка софтстартера

Примерил для начала:

По высоте подходит один в один, по ширине тоже, только длина чуть больше, но место есть.

Теперь вопрос по цепям управления. Контакторы в исходной схеме включались напряжением 24 VAC, а наши АББ управляются напряжением минимум 100 VAC. Налицо необходимость промежуточного реле либо изменения напряжения питания цепи управления.

Однако, на официальном сайте ABB я нашёл схему, где показано, что это устройство способно работать и при 24 VAC. Попытал счастья – не получилось, не запускается…

Что же, ставим промежуточное реле, которое приводит напряжение к нужному уровню:

Вот с другого ракурса:

Вот и всё. Промежуточные реле обозвал 07КМ11 и 07КМ21. Кстати, они также нужны и для дополнительных цепей. Через них включаются индикаторы, и сухие контакты для внешнего устройства (пока не используются, в старой схеме – оранжевые провода).

Когда хотел управление использовать напрямую, без реле (24 VAC), планировал индикаторы включения пустить через контакты Com – Run, которые теперь остались неиспользованные.

Схемы плавного пуска

Вот исходная схема.

А вот как нехитро я изменил схему:

По настройкам – коротко. Тут три регулировки – время разгона, время замедления, и начальное напряжение.

Можно было бы использовать одно устройство плавного пуска, и контакторы выбора двигателя (переключать одно устройство на два двигателя). Но это усложнит и сильно изменит схему, и понизит надежность. Что для такого стратегического объекта, как котельная, очень важно.

Осциллограммы напряжения

Орешек знанья твёрд, но всё же
мы не привыкли отступать!
Нам расколоть его поможет
киножурнал «Хочу всё знать!»

Собрать схему отверткой всякий может. А для тех, кто хочет увидеть напряжение и понять, какие реальные процессы происходят, без осциллографа не обойтись. Публикую осциллограммы на выходе 2Т1 устройства плавного пуска.

Не правда ли, логическая нестыковка – двигатель выключен, а напряжение на нём есть?! Это особенность некоторых устройств мягкого пуска. Неприятная и опасная. Да, на двигателе есть напряжение 220В, даже когда он стоит.

Дело в том, что управление происходит только по двум фазам, а третья (L3 – T3) подключена к двигателю напрямую. А так как тока нет, то на всех выходах устройства действует напряжение фазы L3, которое проходит через обмотки двигателя. Та же ерунда бывает и в трехфазных твердотельных реле, .

Будьте осторожны! При обслуживании двигателя, подключенного к устройству мягкого пуска, отключайте вводные автоматы, и проверяйте отсутствие напряжения!

Поскольку нагрузка индуктивная, то синусоида не только режется на куски, но и сильно искажается.

Помеха прёт, и это надо учитывать – возможны сбои в работе контроллеров и другой слаботочки. Чтобы это влияние уменьшить, надо разносить и экранировать цепи, устанавливать дроссели на входе, и др.

Фото сделано да пару секунд до того, как включился внутренний контактор (байпас), который подал полное напряжение на двигатель.

Фото корпуса

Ещё небольшой бонус – несколько фото внешнего вида устройства плавного пуска ABB PSR-25-600.

ABB PSR-25-600 – вид снизу

Опция – разъем и крепления для подключения вентилятора охлаждения, в случае больших нагрузок

ABB PSR-25-600 – входные силовые клеммы и клеммы питания и управления.

Пока всё, вопросы и критика в комментариях по плавному пуску электродвигателей приветствуются!

С майскими праздниками!

Плавный пуск получил широкое применение в безопасном запуске электродвигателей. Во время запуска двигателя происходит превышение номинального тока (Iн) в 7 раз. В результате этого процесса происходит уменьшение эксплуатационного периода мотора, а именно обмоток статора и значительная нагрузка на подшипники. Именно из-за этой причины и рекомендуется сделать плавный пуск для электроинструмента своими руками, где он не предусмотрен.

Общие сведения

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют сопротивления с активной и реактивной составляющей.

При протекании электрического тока через радиоэлементы , имеющие сопротивление с активной составляющей, происходят потери, связанные с преобразованием части мощности в тепловой вид энергии. Например, резистор и обмотки статора электродвигателя обладают сопротивлением с активной составляющей. Вычислить активное сопротивление не составляет труда, так как происходит совпадение фаз тока (I) и напряжения (U). Используя закон Ома для участка цепи, можно рассчитать активное сопротивление: R = U/I. Оно зависит от материала, площади поперечного сечения, длины и его температуры.

Если ток проходит через реактивный тип элементов (с емкостными и индуктивными характеристиками), то, в этом случае, появляется реактивное R. Катушка индуктивности, не имеющая практически активного сопротивления (при расчетах не учитывается R ее обмоток). Этот вид R создается благодаря Электродвижущей силе (ЭДС) самоиндукции, которая прямо пропорционально зависит от индуктивности и частоты I, проходящего через ее витки: Xl = wL, где w — угловая частота переменного тока (w = 2*Пи*f, причем f — частота тока сети) и L — индуктивность (L = n * n / Rm, n — число витков и Rm - магнитное сопротивление).

При включении электродвигателя пусковой ток в 7 раз больше номинального (ток, потребляемый при работе инструмента) и происходит нагрев обмоток статора. Если статорная катушка является старой, то может произойти межвитковое КЗ, которое повлечет выход электроинструмента из строя. Для этого нужно применить устройство плавного пуска электроинструмента.

Одним из методов снижения пускового тока (Iп) является переключение обмоток. Для его осуществления необходимы 2 типа реле (времени и нагрузки) и наличие трех контакторов.

Пуск электромотора с обмотками, соединенными по типу «звезда» возможен только при 2-х не одновременно замкнутых контакторах. Через определенный интервал времени, который задает реле времени, один из контакторов отключается и включается еще один, не задействованный ранее. Благодаря такому чередованию включения обмоток и происходит снижение пускового тока. Этот способ обладает существенным недостатком, так как при одновременно замыкании двух контакторов возникает ток КЗ. Однако при использовании этого способа обмотки продолжают нагреваться.

Еще одним способом снижения пускового тока является частотное регулирование запуска электродвигателя. Принципом такого подхода является частотное изменение питающего U. Основной элемент этого вида устройств плавного пуска является частотный преобразователь, состоящий из следующих элементов:

  1. Выпрямитель.
  2. Промежуточная цепь.
  3. Инвертор.
  4. Электронная схема управления.

Выпрямитель изготавливается из мощных диодов или тиристоров , выполняющий роль преобразователя U питания сети в постоянный пульсирующий ток. Промежуточная цепь сглаживает пульсирующий постоянный ток на выходе выпрямителя, которая собирается на конденсаторах большой емкости. Инвертор необходим для непосредственного преобразования сигнала на выходе промежуточной цепи в сигнал амплитуды и частоты переменной составляющей. Электронная схема управления нужна для генерации сигналов, необходимых для управления выпрямителем, инвертором.

Принцип действия

Во время пуска электродвигателя коллекторного типа происходит значительное кратковременное увеличение тока потребления, которое и служит причиной преждевременного выхода из строя электроинструмента и сдачей его в ремонт. Происходит износ электрических частей (превышение тока в 7 раз) и механических (резкий запуск). Для организации «мягкого» пуска следует применять устройства плавного пуска (далее УПП). Эти устройства должны соответствовать основным требованиям:

Наиболее широкое распространение получили симисторные УПП, принципом действия которых является плавное регулирование U при помощи регулировки угла открытия перехода симистора. Симистор нужно подключить напрямую к обмоткам двигателя и это позволяет уменьшить пусковой ток от 2 до 5 раз (зависит от симистора и схемы управления). К основным недостаткам симисторных УПП являются следующие:

  1. Сложные схемы.
  2. Перегрев обмоток при длительном запуске.
  3. Проблемы с запуском двигателя (приводит к значительному нагреву статорных обмоток).

Схемы усложняются при использовании мощных двигателей, однако, при небольших нагрузках и холостом ходе возможно использование простых схем.

УПП с регуляторами без обратной связи (по 1 или 3 фазам) получили широкое распространение. В моделях этого типа появляется возможность предварительного выставления времени пуска и величины U перед пуском двигателя. Однако, в этом случае невозможно регулировать величину вращающего момента при нагрузке. С этой моделью применяется специальное устройство для снижения пускового тока, защиты от пропадания и перекоса фаз, а также от перегрузок. Заводские модели имеют функцию слежения за состоянием электромотора.

Простейшие схемы однофазного регулирования исполняются на одном симисторе и используются для инструмента с мощностью до 12 кВт. Существуют более сложные схемы, позволяющие производить регулировку параметров питания двигателя мощностью до 260 кВт. При выборе УПП заводского производства необходимо учесть такие параметры: мощность, возможные режимы работы, равенство допустимы токов и количество запусков в определенный промежуток времени.

Применение в болгарке

Во время запуска угловой шлифовальной машинки (УШМ) появляются высокие нагрузки динамического характера на детали инструмента.

Дорогие модели снабжены УПП, но не обыкновенные разновидности, например, УШМ фирмы «Интерскол». Инерционный рывок способен вырвать из рук УШМ, при этом происходит угроза жизни и здоровью. Кроме того, при пуске электродвигателя инструмента происходит перегрузка по току и в результате этого - износ щеток и значительный нагрев статорных обмоток, изнашивается редуктор и возможно разрушение режущего диска, который может треснуть в любой момент и причинить вред здоровью, а может даже и жизни. Инструмент нужно обезопасить и для этого следует сделать и плавным пуском своими руками.

Самодельные варианты

Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор - полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

Схема 1. Электросхема внутреннего блока с регулировкой оборотов и плавным пуском (схема электрическая принципиальная)

Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Схема 2. Схема плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Основной функцией конденсаторов C1 и C3 является защита и управление микросхемой. Симистор следует подбирать, руководствуясь следующими характеристиками: прямое U должно составлять 400..500 В и прямой ток должен быть не менее 25 А. При таких номиналах радиоэлементов к УПП возможно подключать инструмент с мощностью от 2 кВт до 5 кВт.

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Сопряжен с высокими динамическими нагрузками. За счет массы рабочего диска, в начале вращения на ось редуктора действуют силы инерции. Это влечет за собой некоторые негативные моменты:

  1. Нагрузки на ось при резком старте создают инерционный рывок, который при большом диаметре и массе диска может вырвать электроинструмент из рук;
  2. ВАЖНО! При запуске болгарки, всегда держите инструмент обеими руками, и будьте готовы к его удержанию. В противном случае можно получить травму. Данное предупреждение особенно актуально для тяжелых алмазных или стальных дисков.

  3. При резкой подаче рабочего напряжения на двигатель, возникает перегрузка по току, которая проходит после набора номинальных оборотов;
  4. В результате чего изнашиваются щетки и перегреваются обе обмотки электромотора. При постоянном включении и выключении электроинструмента, перегрев может оплавить изоляцию обмоток и привести к короткому замыканию, с последующим дорогостоящим ремонтом.

  5. Большой крутящий момент при резком наборе оборотов преждевременно изнашивает шестерни редуктора УШМ;
  6. В некоторых случаях возможно отламывание зубьев и заклинивание редуктора.

  7. Перегрузки, которые воспринимает рабочий диск, могут разрушить его при запуске двигателя.
  8. Поэтому наличие защитного кожуха обязательно.

ВАЖНО! Во время запуска болгарки, открытый сектор кожуха должен быть направлен в сторону, противоположную от оператора.

Чтобы лучше понять механику работы, рассмотрим устройство болгарки на чертеже. Хорошо видны все элементы, испытывающие перегрузку при резком старте.

Схематический чертеж расположение рабочих органов и систем управления в болгарке

Для уменьшения пагубных воздействий резкого пуска, производители выпускают болгарки с регулировкой оборотов и плавным пуском.

Регулировка оборотов находится на рукоятке инструмента

Но таким приспособлением оснащаются лишь модели средней и высокой ценовой категории. Многие домашние мастера приобретают УШМ без регулятора и замедления пусковых оборотов. Особенно это касается мощных экземпляров с диаметром отрезного диска более 200 мм. Такую болгарку мало того что тяжело удержать в руках во время запуска, износ механики и электрической части происходит гораздо быстрее.
Выход один – установить плавный пуск болгарки самостоятельно. Существуют готовые заводские устройства с регулятором оборотов и замедлением старта двигателя при запуске.

Готовое устройство для регулировки плавного пуска

Такие блоки устанавливаются внутрь корпуса, при наличии свободного места. Однако, большинство пользователей УШМ предпочитают изготавливать схему для плавного пуска болгарки самостоятельно, и подключать ее в разрыв питающего кабеля.

Как изготовить схему плавного пуска угловой шлифовальной машины своими руками

Популярная схема реализуется на основе управляющей микросхемы фазового регулирования КР118ПМ1, а силовая часть выполнена на симисторах. Такое устройство достаточно просто монтируется, не требует дополнительной настройки после сборки, а стало быть, изготовить ее может мастер без специализированного образования, достаточно уметь держать в руках паяльник.

Электрическая схема регулировки плавного пуска для болгарки

Предложенный блок можно подключить к любому электроинструменту, рассчитанному на переменное напряжение 220 вольт. Отдельный вынос кнопки питания не требуется, доработанный электроинструмент включается штатной клавишей. Схему можно установить как внутрь корпуса болгарки, таки и в разрыв питающего кабеля в отдельном корпусе.

Наиболее практичным является подключение блока плавного пуска к розетке, от которой запитывается электроинструмент. На вход (разъем ХР1) подается питание от сети 220 вольт. К выходу (разъем XS1) подключается расходная розетка, в которую втыкается вилка УШМ.

При замыкании клавиши пуска болгарки, по общей цепи питания подается напряжение на микросхему DA1. На управляющем конденсаторе происходит плавное нарастание напряжения. По мере заряда оно достигает рабочей величины. За счет этого тиристоры в составе микросхемы открываются не сразу, а с задержкой, время которой определяется зарядом конденсатора. Симистор VS1, управляемый тиристорами, открывается с такой же паузой.

Посмотрите видео с подробным разъяснением как сделать и какую схему применить

В каждом полупериоде переменного напряжения, задержка уменьшается в арифметической прогрессии, в результате чего напряжение на входе в электроинструмент плавно возрастает. Этот эффект и определяет плавность запуска двигателя болгарки. Следовательно обороты диска возрастают постепенно, и вал редуктора не испытывает инерционного шока.

Время набора оборотов до рабочего значения определяется емкостью конденсатора С2. Величина 47 мкФ обеспечивает плавный пуск за 2 секунды. При такой задержке нет особого дискомфорта для начала работы с инструментом, и в то же время сам электроинструмент не подвергается избыточным нагрузкам от резкого старта.

После выключения УШМ, конденсатор С2 разряжается сопротивлением резистора R1. При номинале 68 кОм время разряда составляет 3 секунды. После чего устройство плавного пуска готово к новому циклу запуска болгарки.
При небольшой доработке, схему можно модернизировать до регулятора оборотов двигателя. Для этого резистор R1 заменяется на переменный. Регулируя сопротивление, мы контролируем мощность двигателя, меняя его обороты.

Таким образом, в одном корпусе можно выполнить регулятор оборотов двигателя и устройство плавного пуска электроинструмента.

Остальные детали схемы работают следующим образом:

  • Резистор R2 контролирует величину силы тока, протекающую через управляющий вход симистора VS1;
  • Конденсаторы С1 и С2 являются компонентами управления микросхемой КР118ПМ1, используемыми в типовой схеме включения.

Для простоты и компактности монтажа, резисторы и конденсаторы припаиваются прямо к ножкам микросхемы.

Симистор VS1 может быть любым, со следующими характеристиками: максимальное напряжение до 400 вольт, минимальный пропускной ток 25 ампер. Величина тока зависит от мощности угловой шлифовальной машины.

По причине плавного пуска болгарки, ток не будет превышать номинального рабочего значения для выбранного электроинструмента. Для экстренных случаев, например, заклинивания диска УШМ – необходим запас по току. Поэтому значение номинальной величины в амперах следует увеличить вдвое.

Номиналы радиодеталей, использованных в предлагаемой электросхеме – испытаны на УШМ мощностью 2 кВт. Запас по мощности имеется до 5 кВт, это связано с особенностью работы микросхемы КР118ПМ1.
Схема рабочая, многократно исполненная домашними мастерами.

Асинхронные электродвигатели, помимо очевидных преимуществ имеют два существенных недостатка – большой пусковой ток (до семи раз больше номинального) и рывок на старте. Данные недостатки негативно влияют на состояние електросетей, требуют применения автоматических выключателей с соответствующей времятоковой характеристикой, создают критические динамические нагрузки на оборудование.

С эффектом запуска мощного асинхронного двигателя знакомы все: «проседает напряжение и сотрясается все вокруг электродвигателя. Поэтому, для уменьшения негативных воздействий были разработаны способы и схемы, позволяющие смягчить рывок и сделать запуск асинхронного двигателя с короткозамкнутым ротором более плавным.

Способы плавного пуска асинхронных двигателей

Кроме негативного влияния на цепи питания и окружение, стартовый импульс электродвигателя вреден и для его обмоток статора, ведь момент увеличенной силы при запуске прикладывается к обмоткам. То есть, сила рывка ротора усиленно давит на обмоточные провода, тем самым убыстряя износ их изоляции, пробой которой называют межвитковым замыканием.


Иллюстрация принципа действия асинхронного электродвигателя

Поскольку конструктивно нельзя уменьшить пусковой ток, придуманы способы, схемы и аппараты, обеспечивающие плавный пуск асинхронного двигателя. В большинстве случаев, на производствах с мощными линиями питания и в быту данная опция не является обязательной – так как колебания напряжения и пусковые вибрации не оказывают существенного влияния на производственный процесс.


Графики изменения токов при прямом запуске и при помощи устройств плавного пуска

Но существуют технологии, требующие стабильных, не превышающих норм параметров, как электроснабжения, так и динамических нагрузок. Например – это может быть точное оборудование, работающее в одной сети с чувствительными к напряжению потребителями электроэнергии. В этом случае, для соблюдения технологических норм для мягкого запуска электродвигателя применяют различные способы:

  • Переключение звезда – треугольник;
  • Запуск при помощи автотрансформатора;
  • устройства плавного пуска асинхронного двигателя (УПП).

В приведенном ниже видео перечислены основные проблемы, возникающие при запуске электродвигателя, а также описаны достоинства и недостатки различных устройств плавного пуска асинхронных электродвигателей с короткозамкнутым ротором.


По-иному УПП еще называют софт стартерами, от английского «soft» – мягкий. Ниже будут кратко описаны виды и предлагаемые опции в широко распространенных УПП (софт стартерах). Также вы можете ознакомиться с дополнительными материалами по устройствам плавного пуска


Промышленные софт стартеры для электродвигателей различной мощности

Ознакомление с принципом плавного запуска

Для того, чтобы осуществить плавный пуск асинхронного электродвигателя максимально эффективно и с минимальными затратами, приобретая готовые софт стартеры, необходимо прежде ознакомиться с принципом действия подобных устройств и схем. Понимание взаимодействия физических параметров позволит сделать оптимальный выбор УПП.

При помощи устройств плавного пуска можно добиться снижения пускового тока до значения трехкратного превышения номинального (вместо семикратной перегрузки)

Для плавного пуска асинхронного электродвигателя необходимо уменьшить пусковой ток , что позитивно скажется как на нагрузке электросети, так и на динамических перегрузках обмоток двигателя и приводных механизмов. Достигают уменьшения пускового тока, снижая напряжение питания электродвигателя. Заниженное пусковое напряжение используется во всех трех предложенных выше способах. Например, при помощи автотрансформатора пользователь самостоятельно занижает напряжение при запуске, поворачивая ползунок.


Понижая напряжение на старте можно добиться плавного запуска електродвигателя

При использовании переключения «звезда-треугольник» меняется линейное напряжение на обмотках электродвигателя. Переключение осуществляется при помощи контакторов и реле времени, рассчитанное на время запуска электродвигателя. Подробное описание плавного пуска асинхронного электродвигателя при помощи имеется на данном ресурсе по указанной ссылке.


Схема переключения «звезда-треугольник» с использованием контакторов и реле времени

Теория осуществления плавного запуска

Для понимания принципа плавного старта необходимо понимание закона сохранения энергии, необходимой для раскрутки вала ротора электромотора. Упрощенно можно считать энергию разгона пропорциональной мощности и времени, E = P*t, где P – мощность, равная умножению силы тока на напряжение (P = U*I). Соответственно, E = U*I *t. Поскольку для уменьшения пускового момента и снижения нагрузок на сеть необходимо уменьшить стартовый ток I, то сохраняя уровень потраченной энергии нужно увеличить время разгона.

Увеличение времени разгона за счет снижения пускового тока возможно только при небольшой нагрузке на валу. Это является основным недостатком всех УПП

Поэтому для оборудования с тяжелыми условиями старта (большой нагрузкой на валу во время запуска), применяются специальные электродвигатели с фазным ротором. Узнать о свойствах данных двигателей можно из соответствующего раздела в на данном ресурсе, перейдя по ссылке.


Звигатель с фозім ротором, необходим для оборудования с тіжелім запуском

Также необходимо учитывать, что во время мягкого запуска происходит увеличенный нагрев обмоток и электронных силовых ключей пускового устройства. Для охлаждения полупроводниковых ключей необходимо использование массивных радиаторов, которые увеличивают стоимость аппарата. Поэтому уместно использование УПП для кратковременного разгона двигателя с дальнейшим шунтированием ключей прямым напряжением сети. Подобный режим (переключение байпас ) делает компактней и дешевле электронное устройство плавного пуска асинхронных двигателей, но ограничивает количество запусков в определенном интервале ввиду требуемого времени для охлаждения ключей.


Структурная схема шунтирования силовых полупроводниковых ключей (байпас)

Основные параметры и характеристики УПП

Ниже в тексте будут приведены схемы аппаратов плавного запуска для изучения и собственноручного изготовления. Для тех, кто не готов осуществить плавный пуск асинхронного электродвигателя своими руками, полагаясь на готовое изделие, будет полезной информация о существующих разновидностях софт стартеров.


Пример аналогово и цифрового УПП, в модульном исполнении (устанавливается на DIN-рейку)

Одним из главных параметров при выборе УПП является мощность обслуживаемого электромотора, выраженная в киловаттах. Не менее важным является время разгона и возможность регулировки интервала запуска. Данными характеристиками обладают все существующие софт стартеры. Более совершенные УПП являются универсальными и позволяют настраивать параметры мягкого запуска в широком диапазоне значений относительно характеристик двигателя и требований технологического процесса.

Пример универсального софтстартера

В зависимости от типа софт стартера в них могут присутствовать различные опции, повышающие функциональность аппарата и позволяющие осуществлять контроль работы электродвигателя. Например, при помощи некоторых УПП возможно осуществление не только плавного запуска электромотора, но и его торможение. Более совершенные софт стартеры осуществляют защиту двигателя от перегрузок и позволяют также регулировать вращательный момент ротора при пуске, останове и работе.


Пример различий в технических характеристиках различных УПП от одного производителя

Разновидности софт стартеров

По способу подключения УПП подразделяются на три вида:


УПП своими руками

Для самостоятельного изготовления УПП используемая схема плавного пуска асинхронного двигателя своими руками будет зависеть от возможности и навыков мастера. Самостоятельное смягчение пусковых перегрузок при помощи автотрансформатора доступно практически любому пользователю без специальных знаний, но данный способ является неудобным ввиду необходимости ручной регулировки старта электродвигателя. В продаже можно встретить недорогие устройства плавного запуска, которые придется самостоятельно подключить к электроинструменту, не обладая глубокими познаниями в радиотехнике. Пример работы до и после софт стартера, а также его подключение показано на видео ниже:


Для мастеров, обладающих общими знаниями в электротехнике, и владеющих практическими навыками электромонтажа подойдет для собственноручного осуществления плавного запуска схема переключения «звезда-треугольник». Данные схемы, несмотря на их солидный возраст, широко распространены и успешно используются по сей день ввиду простоты и надежности. В зависимости от квалификации мастера в сети интернет можно найти схемы УПП для повторения своими руками.

Пример схемы относительно простого двухфазного УПП

Современные софт стартеры имеют внутри сложную электронную начинку из множества электронных деталей, работающих под управлением микропроцессора. Поэтому для изготовления аналогичного УПП своими руками по имеющимся в сети интернет схемам необходимо не только мастерство радиолюбителя, но и навыки программирования микроконтроллеров.