Время как физическая скалярная величина характеризуется. Какая величина является векторной, а какая скалярной? Просто о сложном

Физика и математика не обходятся без понятия «векторная величина». Ее необходимо знать и узнавать, а также уметь с нею оперировать. Этому обязательно стоит научиться, чтобы не путаться и не допускать глупых ошибок.

Как отличить скалярную величину от векторной?

Первая всегда имеет только одну характеристику. Это ее числовое значение. Большинство скалярных величин могут принимать как положительные, так и отрицательные значения. Их примерами может служить электрический заряд, работа или температура. Но есть такие скаляры, которые не могут быть отрицательными, например, длина и масса.

Векторная величина, кроме числовой величины, которая всегда берется по модулю, характеризуется еще и направлением. Поэтому она может быть изображена графически, то есть в виде стрелки, длина которой равна модулю величины, направленной в определенную сторону.

При письме каждая векторная величина обозначается знаком стрелки на буквой. Если идет речь о числовом значении, то стрелка не пишется или ее берут по модулю.

Какие действия чаще всего выполняются с векторами?

Сначала — сравнение. Они могут быть равными или нет. В первом случае их модули одинаковые. Но это не единственное условие. У них должны быть еще одинаковые или противоположные направления. В первом случае их следует называть равными векторами. Во втором они оказываются противоположными. Если не выполняется хотя бы одно из указанных условий, то векторы не равны.

Потом идет сложение. Его можно сделать по двум правилам: треугольника или параллелограмма. Первое предписывает откладывать сначала один вектор, потом от его конца второй. Результатом сложения будет тот, который нужно провести от начала первого к концу второго.

Правило параллелограмма можно использовать, когда нужно сложить векторные величины в физике. В отличие от первого правила, здесь их следует откладывать от одной точки. Потом достроить их до параллелограмма. Результатом действия следует считать диагональ параллелограмма, проведенную из той же точки.

Если векторная величина вычитается из другой, то они снова откладываются из одной точки. Только результатом будет вектор, который совпадает с тем, что отложен от конца второго к концу первого.

Какие векторы изучают в физике?

Их так же много, как скаляров. Можно просто запомнить то, какие векторные величины в физике существуют. Или знать признаки, по которым их можно вычислить. Тем, кто предпочитает первый вариант, пригодится такая таблица. В ней приведены основные векторные

Теперь немного подробнее о некоторых из этих величин.

Первая величина — скорость

С нее стоит начать приводить примеры векторных величин. Это обусловлено тем, что ее изучают в числе первых.

Скорость определяется как характеристика движения тела в пространстве. Ею задается числовое значение и направление. Поэтому скорость является векторной величиной. К тому же ее принято разделять на виды. Первый является линейной скоростью. Ее вводят при рассмотрении прямолинейного равномерного движения. При этом она оказывается равной отношению пути, пройденного телом, ко времени движения.

Эту же формулу допустимо использовать при неравномерном движении. Только тогда она будет являться средней. Причем интервал времени, который необходимо выбирать, обязательно должен быть как можно меньше. При стремлении промежутка времени к нулю значение скорости уже является мгновенным.

Если рассматривается произвольное движение, то здесь всегда скорость — векторная величина. Ведь ее приходится раскладывать на составляющие, направленные вдоль каждого вектора, направляющего координатные прямые. К тому же определяется он как производная радиус-вектора, взятая по времени.

Вторая величина — сила

Она определяет меру интенсивности воздействия, которое оказывается на тело со стороны других тел или полей. Поскольку сила — векторная величина, то она обязательно имеет свое значение по модулю и направление. Так как она действует на тело, то важным является еще и точка, к которой приложена сила. Чтобы получить наглядное представление о векторах сил, можно обратиться к следующей таблице.

Также еще векторной величиной является равнодействующая сила. Она определяется как сумма всех действующих на тело механических сил. Для ее определения необходимо выполнить сложение по принципу правила треугольника. Только откладывать векторы нужно по очереди от конца предыдущего. Результатом окажется тот, который соединяет начало первого с концом последнего.

Третья величина — перемещение

Во время движения тело описывает некоторую линию. Она называется траекторией. Эта линия может быть совершенно разной. Важнее оказывается не ее внешний вид, а точки начала и конца движения. Они соединяются отрезком, который называется перемещением. Это тоже векторная величина. Причем оно всегда направлено от начала перемещения к точке, где движение было прекращено. Обозначать его принято латинской буквой r.

Здесь может появиться такой вопрос: «Путь — векторная величина?». В общем случае это утверждение не является верным. Путь равен длине траектории и не имеет определенного направления. Исключением считается ситуация, когда рассматривается в одном направлении. Тогда модуль вектора перемещения совпадает по значению с путем, и направление у них оказывается одинаковым. Поэтому при рассмотрении движения вдоль прямой без изменения направления перемещения путь можно включить в примеры векторных величин.

Четвертая величина — ускорение

Оно является характеристикой быстроты изменения скорости. Причем ускорение может иметь как положительное, так и отрицательное значение. При прямолинейном движении оно направлено в сторону большей скорости. Если перемещение происходит по криволинейной траектории, то вектор его ускорения раскладывается на две составляющие, одна из которых направлена к центру кривизны по радиусу.

Выделяют среднее и мгновенное значение ускорения. Первое следует рассчитывать как отношение изменения скорости за некоторый промежуток времени к этому времени. При стремлении рассматриваемого интервала времени к нулю говорят о мгновенном ускорении.

Пятая величина — импульс

По-другому его еще называют количеством движения. Импульс векторной величиной является из-за того, что напрямую связан со скоростью и силой, приложенной к телу. Обе они имеют направление и задают его импульсу.

По определению последний равен произведению массы тела на скорость. Используя понятие импульса тела, можно по-другому записать известный закон Ньютона. Получается, что изменение импульса равно произведению силы на промежуток времени.

В физике важную роль имеет закон сохранения импульса, который утверждает, что в замкнутой системе тел ее суммарный импульс является постоянным.

Мы очень кратко перечислили, какие величины (векторные) изучаются в курсе физики.

Задача о неупругом ударе

Условие. На рельсах стоит неподвижная платформа. К ней приближается вагон со скоростью 4 м/с. и вагона - 10 и 40 тонн соответственно. Вагон ударяется о платформу, происходит автосцеп. Необходимо вычислить скорость системы "вагон-платформа" после удара.

Решение. Сначала требуется ввести обозначения: скорость вагона до удара — v 1 , вагона с платформой после сцепки — v, масса вагона m 1 , платформы — m 2 . По условию задачи необходимо узнать значение скорости v.

Правила решения подобных заданий требуют схематичного изображения системы до и после взаимодействия. Ось OX разумно направить вдоль рельсов в ту сторону, куда движется вагон.

В данных условиях систему вагонов можно считать замкнутой. Это определяется тем, что внешними силами можно пренебречь. Сила тяжести и уравновешены, а трение о рельсы не учитывается.

Согласно закону сохранения импульса, их векторная сумма до взаимодействия вагона и платформы равна общему для сцепки после удара. Сначала платформа не двигалась, поэтому ее импульс был равен нулю. Перемещался только вагон, его импульс — произведение m 1 и v 1 .

Так как удар был неупругий, то есть вагон сцепился с платформой, и дальше он стали катиться вместе в ту же сторону, то импульс системы не изменил направления. Но его значение стало другим. А именно произведением суммы массы вагона с платформой и искомой скорости.

Можно записать такое равенство: m 1 * v 1 = (m 1 + m 2) * v. Оно будет верно для проекции векторов импульсов на выбранную ось. Из него легко вывести равенство, которое потребуется для вычисления искомой скорости: v = m 1 * v 1 / (m 1 + m 2).

По правилам следует перевести значения для массы из тонн в килограммы. Поэтому при подстановке их в формулу следует сначала умножить известные величины на тысячу. Простые расчеты дают число 0,75 м/с.

Ответ. Скорость вагона с платформой равна 0,75 м/с.

Задача с разделением тела на части

Условие . Скорость летящей гранаты 20 м/с. Она разрывается на два осколка. Масса первого 1,8 кг. Он продолжает двигаться в направлении, в котором летела граната, со скоростью 50 м/с. Второй осколок имеет массу 1,2 кг. Какова его скорость?

Решение. Пусть массы осколков обозначены буквами m 1 и m 2 . Их скорости соответственно будут v 1 и v 2 . Начальная скорость гранаты — v. В задаче нужно вычислить значение v 2 .

Для того чтобы больший осколок продолжал двигаться в том же направлении, что и вся граната, второй должен полететь в обратную сторону. Если выбрать за направление оси то, которое было у начального импульса, то после разрыва большой осколок летит по оси, а маленький — против оси.

В этой задаче разрешено пользоваться законом сохранения импульса из-за того, что разрыв гранаты происходит мгновенно. Поэтому, несмотря на то что на гранату и ее части действует сила тяжести, она не успевает подействовать и изменить направление вектора импульса с его значением по модулю.

Сумма векторных величин импульса после разрыва гранаты равна тому, который был до него. Если записать закон сохранения в проекции на ось OX, то он будет выглядеть так: (m 1 + m 2) * v = m 1 * v 1 — m 2 * v 2 . Из него просто выразить искомую скорость. Она определится по формуле: v 2 = ((m 1 + m 2) * v — m 1 * v 1) / m 2 . После подстановки числовых значений и расчетов получается 25 м/с.

Ответ. Скорость маленького осколка равна 25 м/с.

Задача про выстрел под углом

Условие. На платформе массой M установлено орудие. Из него производится выстрел снарядом массой m. Он вылетает под углом α к горизонту со скоростью v (данной относительно земли). Требуется узнать значение скорости платформы после выстрела.

Решение. В этой задаче можно использовать закон сохранения импульса в проекции на ось OX. Но только в том случае, когда проекции внешних равнодействующих сил равна нулю.

За направление оси OX нужно выбрать ту сторону, куда полетит снаряд, и параллельно горизонтальной линии. В этом случае проекции сил тяжести и реакции опоры на OX будут равны нулю.

Задача будет решена в общем виде, так как нет конкретных данных для известных величин. Ответом в ней является формула.

Импульс системы до выстрела был равен нулю, поскольку платформа и снаряд были неподвижны. Пусть искомая скорость платформы будет обозначена латинской буквой u. Тогда ее импульс после выстрела определится как произведение массы на проекцию скорости. Так как платформа откатится назад (против направления оси OX), то значение импульса будет со знаком минус.

Импульс снаряда — произведение его массы на проекцию скорости на ось OX. Из-за того, что скорость направлена под углом к горизонту, ее проекция равна скорости, умноженной на косинус угла. В буквенном равенстве это будет выглядеть так: 0 = - Mu + mv * cos α. Из нее путем несложных преобразований получается формула-ответ: u = (mv * cos α) / M.

Ответ. Скорость платформы определяется по формуле u = (mv * cos α) / M.

Задача о переправе через реку

Условие. Ширина реки по всей ее длине одинакова и равна l, ее берега параллельны. Известна скорость течения воды в реке v 1 и собственная скорость катера v 2 . 1). При переправе нос катера направлен строго к противоположному берегу. На какое расстояние s его снесет вниз по течению? 2). Под каким углом α нужно направить нос катера, чтобы он достиг противоположного берега строго перпендикулярно к точке отправления? Сколько времени t потребуется на такую переправу?

Решение. 1). Полная скорость катера является векторной суммой двух величин. Первая из них течение реки, которое направлено вдоль берегов. Вторая — собственная скорость катера, перпендикулярная берегам. На чертеже получается два подобных треугольника. Первый образован шириной реки и расстоянием, на которое сносит катер. Второй — векторами скоростей.

Из них следует такая запись: s / l = v 1 / v 2 . После преобразования получается формула для искомой величины: s = l * (v 1 / v 2).

2). В этом варианте задачи вектор полной скорости перпендикулярен берегам. Он равен векторной сумме v 1 и v 2 . Синус угла, на который должен отклоняться вектор собственной скорости, равен отношению модулей v 1 и v 2 . Для расчета времени движения потребуется разделить ширину реки на сосчитанную полную скорость. Значение последней вычисляется по теореме Пифагора.

v = √(v 2 2 - v 1 2), тогда t = l / (√(v 2 2 - v 1 2)).

Ответ. 1). s = l * (v 1 / v 2), 2). sin α = v 1 / v 2 , t = l / (√(v 2 2 - v 1 2)).

Вектор − чисто математическое понятие, которое лишь применяется в физике или других прикладных науках и которое позволяет упростить решение некоторых сложных задач.
Вектор − направленный отрезок прямой.
 В курсе элементарной физики приходится оперировать двумя категориями величин − скалярными и векторными .
Скалярными величинами (скалярами) называют величины, характеризующиеся числовым значением и знаком. Скалярами являются длина − l , масса − m , путь − s , время − t , температура − T , электрический заряд − q , энергия − W , координаты и т.д.
 К скалярным величинам применяются все алгебраические действия (сложение, вычитание, умножение и т.д.).

Пример 1 .
 Определить полный заряд системы, состоящий из зарядов, входящих в нее, если q 1 = 2 нКл, q 2 = −7 нКл, q 3 = 3 нКл.
Полный заряд системы
q = q 1 + q 2 + q 3 = (2 − 7 + 3) нКл = −2 нКл = −2 × 10 −9 Кл.

Пример 2 .
 Для квадратного уравнения вида
ax 2 + bx + с = 0;
x 1,2 = (1/(2a)) × (−b ± √{b 2 − 4ac}).

Векторными величинами (векторами) называют величины, для определения которых необходимо указать кроме численного значения так же и направление. Векторы − скорость v , сила F , импульс p , напряженность электрического поля E , магнитная индукция B и др.
 Численное значение вектора (модуль) обозначают буквой без символа вектора или заключают вектор между вертикальными черточками r = |r| .
 Графически вектор изображают стрелкой (рис. 1),

Длина которой в заданном масштабе равна его модулю, а направление совпадает с направлением вектора.
Два вектора равны, если совпадают их модули и направления.
 Векторные величины складываются геометрически (по правилу векторной алгебры).
 Нахождение векторной суммы по данным составляющим векторам называется сложением векторов.
 Сложение двух векторов производят по правилу параллелограмма или треугольника. Суммарный вектор
с = a + b
равен диагонали параллелограмма, построенного на векторах a и b . Модуль его
с = √{a 2 + b 2 − 2abcosα} (рис. 2).


При α = 90°, с = √{a 2 + b 2 } − теорема Пифагора.

Тот же вектор c можно получить по правилу треугольника, если из конца вектора a отложить вектор b . Замыкающий вектор c (соединяющий начало вектора a и конец вектора b ) является векторной суммой слагаемых (составляющих векторов a и b ).
 Результирующий вектор находят как замыкающую той ломанной линии, звеньями которой являются составляющие векторы (рис. 3).


Пример 3 .
 Сложить две силы F 1 = 3 Н и F 2 = 4 Н, векторы F 1 и F 2 составляют с горизонтом углы α 1 = 10° и α 2 = 40°, соответственно
F = F 1 + F 2 (рис. 4).

 Результатом сложения этих двух сил является сила, называемая равнодействующей. Вектор F направлен по диагонали параллелограмма, построенного на векторах F 1 и F 2 , как сторонах, и по модулю равен ее длине.
 Модуль вектора F находим по теореме косинусов
F = √{F 1 2 + F 2 2 + 2F 1 F 2 cos(α 2 − α 1)},
F = √{3 2 + 4 2 + 2 × 3 × 4 × cos(40° − 10°)} ≈ 6,8 H.
Если
(α 2 − α 1) = 90°, то F = √{F 1 2 + F 2 2 }.

Угол, который вектор F составляет с осью Ox, находим по формуле
α = arctg((F 1 sinα 1 + F 2 sinα 2)/(F 1 cosα 1 + F 2 cosα 2)),
α = arctg((3.0,17 + 4.0,64)/(3.0,98 + 4.0,77)) = arctg0,51, α ≈ 0,47 рад.

Проекция вектора a на ось Ox (Oy) − скалярная величина, зависящая от угла α между направлением вектора a и оси Ox (Oy). (рис. 5)


 Проекции вектора a на оси Ox и Oy прямоугольной системы координат. (рис. 6)


 Чтобы не допустить ошибок при определении знака проекции вектора на ось, полезно запомнить следующее правило: если направление составляющей совпадает с направлением оси, то проекция вектора на эту ось положительна, если же направление составляющей противоположно направлению оси, то проекция вектора отрицательна. (рис. 7)


 Вычитание векторов − это сложение, при котором к первому вектору прибавляется вектор, численно равный второму, противоположно направленный
a − b = a + (−b) = d (рис. 8).

 Пусть надо из вектора a вычесть вектор b , их разность − d . Чтобы найти разность двух векторов, надо к вектору a прибавить вектор (−b ), то есть вектором d = a − b будет вектор, направленный от начала вектора a к концу вектора (−b ) (рис. 9).

 В параллелограмме, построенном на векторах a и b как сторонах, одна диагональ c имеет смысл суммы, а другая d − разности векторов a и b (рис. 9).
 Произведение вектора a на скаляр k равно вектору b = ka , модуль которого в k раз больше модуля вектора a , а направление совпадает с направлением a при положительном k и противоположно ему при отрицательном k.

Пример 4 .
 Определить импульс тела массой 2 кг, движущегося со скоростью 5 м/с. (рис. 10)

Импульс тела p = mv ; p = 2 кг.м/с = 10 кг.м/с и направлен в сторону скорости v .

Пример 5 .
 Заряд q = −7,5 нКл помещен в электрическое поле с напряженностью E = 400 В/м. Найти модуль и направление силы, действующей на заряд.

Сила равна F = qE . Так как заряд отрицательный, то вектор силы направлен в сторону, противоположную вектору E . (рис. 11)


Деление вектора a на скаляр k равнозначно умножению a на 1/k.
Скалярным произведением векторов a и b называют скаляр «c», равный произведению модулей этих векторов на косинус угла между ними
(a.b) = (b.a) = c,
с = ab.cosα (рис. 12)


Пример 6 .
 Найти работу постоянной силы F = 20 Н, если перемещение S = 7,5 м, а угол α между силой и перемещением α = 120°.

Работа силы равна по определению скалярному произведению силы и перемещения
A = (F.S) = FScosα = 20 H × 7,5 м × cos120° = −150 × 1/2 = −75 Дж.

Векторным произведением векторов a и b называют вектор c , численно равный произведению модулей векторов a и b, умноженных на синус угла между ними:
с = a × b = ,
с = ab × sinα.
 Вектор c перпендикулярен плоскости, в которой лежат векторы a и b , причем его направление связано с направлением векторов a и b правилом правого винта (рис. 13).


Пример 7 .
 Определить силу, действующую на проводник длиной 0,2 м, помещенный в магнитном поле, индукция которого 5 Тл, если сила тока в проводнике 10 А и он образует угол α = 30° с направлением поля.

Сила Ампера
dF = I = Idl × B или F = I(l)∫{dl × B},
F = IlBsinα = 5 Тл × 10 А × 0,2 м × 1/2 = 5 Н.

Рассмотрите решение задач .
 1. Как направлены два вектора, модули которых одинаковы и равны a, если модуль их суммы равен: а) 0; б) 2а; в) а; г) a√{2}; д) a√{3}?

Решение .
 а) Два вектора направлены вдоль одной прямой в противоположные стороны. Сумма этих векторов равна нулю.

 б) Два вектора направлены вдоль одной прямой в одном направлении. Сумма этих векторов равна 2a.

 в) Два вектора направлены под углом 120° друг к другу. Сумма векторов равна a. Результирующий вектор находим по теореме косинусов:

a 2 + a 2 + 2aacosα = a 2 ,
cosα = −1/2 и α = 120°.
 г) Два вектора направлены под углом 90° друг к другу. Модуль суммы равен
a 2 + a 2 + 2aacosα = 2a 2 ,
cosα = 0 и α = 90°.

 д) Два вектора направлены под углом 60° друг к другу. Модуль суммы равен
a 2 + a 2 + 2aacosα = 3a 2 ,
cosα = 1/2 и α = 60°.
Ответ : Угол α между векторами равен: а) 180°; б) 0; в) 120°; г) 90°; д) 60°.

2. Если a = a 1 + a 2 ориентации векторов, то, что можно сказать о взаимной ориентации векторов a 1 и a 2 , если: а) a = a 1 + a 2 ; б) a 2 = a 1 2 + a 2 2 ; в) a 1 + a 2 = a 1 − a 2 ?

Решение .
 а) Если сумма векторов находится как сумма модулей этих векторов, то вектора направлены вдоль одной прямой, параллельно друг другу a 1 ||a 2 .
 б) Если вектора направлены под углом друг к другу, то их сумма находится по теореме косинусов для параллелограмма
a 1 2 + a 2 2 + 2a 1 a 2 cosα = a 2 ,
cosα = 0 и α = 90°.
вектора перпендикулярны друг другу a 1 ⊥ a 2 .
 в) Условие a 1 + a 2 = a 1 − a 2 может выполниться, в случае если a 2 − нулевой вектор, тогда a 1 + a 2 = a 1 .
Ответы . а) a 1 ||a 2 ; б) a 1 ⊥ a 2 ; в) a 2 − нулевой вектор.

3. Две силы по 1,42 H каждая приложены к одной точке тела под углом 60° друг к другу. Под каким углом надо приложить к той же точке тела две силы по 1,75 H каждая, чтобы действие их уравновешивало действие первых двух сил?

Решение.
 По условию задачи две силы по 1,75 Н уравновешивают две силы по 1,42 Н. Это возможно, если равны модули результирующих векторов пар сил. Результирующий вектор определим по теореме косинусов для параллелограмма. Для первой пары сил:
F 1 2 + F 1 2 + 2F 1 F 1 cosα = F 2 ,
для второй пары сил, соответственно
F 2 2 + F 2 2 + 2F 2 F 2 cosβ = F 2 .
Приравняв левые части уравнений
F 1 2 + F 1 2 + 2F 1 F 1 cosα = F 2 2 + F 2 2 + 2F 2 F 2 cosβ.
Найдем искомый угол β между векторами
cosβ = (F 1 2 + F 1 2 + 2F 1 F 1 cosα − F 2 2 − F 2 2)/(2F 2 F 2).
После вычислений,
cosβ = (2.1,422 + 2.1,422.cos60° − 2.1,752)/(2.1,752) = −0,0124,
β ≈ 90,7°.

Второй способ решения .
 Рассмотрим проекцию векторов на ось координат ОХ (рис.).

 Воспользовавшись соотношением между сторонами в прямоугольном треугольнике, получим
2F 1 cos(α/2) = 2F 2 cos(β/2) ,
откуда
cos(β/2) = (F 1 /F 2)cos(α/2) = (1,42/1,75) × cos(60/2) и β ≈ 90,7°.

4. Вектор a = 3i − 4j . Какова должна быть скалярная величина c, чтобы |ca | = 7,5?
Решение .
ca = c(3i − 4j ) = 7,5
Модуль вектора a будет равен
a 2 = 3 2 + 4 2 , и a = ±5,
тогда из
c.(±5) = 7,5,
найдем, что
c = ±1,5.

5. Векторы a 1 и a 2 выходят из начала координат и имеют декартовы координаты концов {6, 0} и {1, 4}, соответственно. Найдите вектор a 3 такой, что: а) a 1 + a 2 + a 3 = 0; б) a 1 a 2 + a 3 = 0.

Решение .
 Изобразим векторы в декартовой системе координат (рис.)

 а) Результирующий вектор вдоль оси Ox равен
a x = 6 + 1 = 7.
Результирующий вектор вдоль оси Oy равен
a y = 4 + 0 = 4.
Чтобы сумма векторов была равна нулю, необходимо, чтобы выполнялось условие
a 1 + a 2 = −a 3 .
Вектор a 3 по модулю будет равен суммарному вектору a 1 + a 2 , но направлен в противоположную ему сторону. Координата конца вектора a 3 равна {−7, −4}, а модуль
a 3 = √{7 2 + 4 2 } = 8,1.

Б) Результирующий вектор вдоль оси Ox равен
a x = 6 − 1 = 5,
а результирующий вектор вдоль оси Oy
a y = 4 − 0 = 4.
При выполнении условия
a 1 a 2 = −a 3 ,
вектор a 3 будет иметь координаты конца вектора a x = –5 и a y = −4, а модуль его равен
a 3 = √{5 2 + 4 2 } = 6,4.

6. Посыльный проходит 30 м на север, 25 м на восток, 12 м на юг, а затем в здании поднимается на лифте на высоту 36 м. Чему равны пройденный им путь L и перемещение S?

Решение .
 Изобразим ситуацию, описанную в задаче на плоскости в произвольном масштабе (рис.).

Конец вектора OA имеет координаты 25 м на восток, 18 м на север и 36 вверх (25; 18; 36). Путь, пройденный человеком равен
L = 30 м + 25 м + 12 м +36 м = 103 м.
Модуль вектора перемещения найдем по формуле
S = √{(x − x o) 2 + (y − y o) 2 + (z − z o) 2 },
где x o = 0, y o = 0, z o = 0.
S = √{25 2 + 18 2 + 36 2 } = 47,4 (м).
Ответ : L = 103 м, S = 47,4 м.

7. Угол α между двумя векторами a и b равен 60°. Определите длину вектора с = a + b и угол β между векторами a и c . Величины векторов равны a = 3,0 и b = 2,0.

Решение .
 Длину вектора, равного сумме векторов a и b определим воспользовавшись теоремой косинусов для параллелограмма (рис.).

с = √{a 2 + b 2 + 2abcosα}.
После подстановки
с = √{3 2 + 2 2 + 2.3.2.cos60°} = 4,4.
Для определения угла β воспользуемся теоремой синусов для треугольника ABC:
b/sinβ = a/sin(α − β).
При этом следует знать, что
sin(α − β) = sinαcosβ − cosαsinβ.
 Решая простое тригонометрическое уравнение, приходим к выражению
tgβ = bsinα/(a + bcosα),
следовательно,
β = arctg(bsinα/(a + bcosα)),
β = arctg(2.sin60/(3 + 2.cos60)) ≈ 23°.
 Сделаем проверку, воспользовавшись теоремой косинусов для треугольника:
a 2 + c 2 − 2ac.cosβ = b 2 ,
откуда
cosβ = (a 2 + c 2 − b 2)/(2ac)
и
β = arccos((a 2 + c 2 − b 2)/(2ac)) = arccos((3 2 + 4,4 2 − 2 2)/(2.3.4,4)) = 23°.
Ответ : c ≈ 4,4; β ≈ 23°.

Решите задачи .
 8. Для векторов a и b , определенных в примере 7, найдите длину вектора d = a − b угол γ между a и d .

9. Найдите проекцию вектора a = 4,0i + 7,0j на прямую, направление которой составляет угол α = 30° с осью Ox. Вектор a и прямая лежат в плоскости xOy.

10. Вектор a составляет угол α = 30° с прямой АВ, a = 3,0. Под каким углом β к прямой АВ нужно направить вектор b (b = √{3}), чтобы вектор с = a + b был параллелен АВ? Найдите длину вектора c .

11. Заданы три вектора: a = 3i + 2j − k ; b = 2i − j + k ; с = i + 3j . Найдите а) a + b ; б) a + c ; в) (a, b) ; г) (a, c)b − (a, b)c .

12. Угол между векторами a и b равен α = 60°, a = 2,0, b = 1,0. Найдите длины векторов с = (a, b)a + b и d = 2b − a/2 .

13. Докажите, что векторы a и b перпендикулярны, если a = {2, 1, −5} и b = {5, −5, 1}.

14. Найдите угол α между векторами a и b , если a = {1, 2, 3}, b = {3, 2, 1}.

15. Вектор a составляет с осью Ox угол α = 30°, проекция этого вектора на ось Oy равна a y = 2,0. Вектор b перпендикулярен вектору a и b = 3,0 (см. рис.).

Вектор с = a + b . Найдите: a) проекции вектора b на оси Ox и Oy; б) величину c и угол β между вектором c и осью Ox; в) (a, b); г) (a, c).

Ответы :
 9. a 1 = a x cosα + a y sinα ≈ 7,0.
 10. β = 300°; c = 3,5.
 11. а) 5i + j; б) i + 3j − 2k; в) 15i − 18j + 9 k.
 12. c = 2,6; d = 1,7.
 14. α = 44,4°.
 15. а) b x = −1,5; b y = 2,6; б) с = 5; β ≈ 67°; в) 0; г) 16,0.
 Изучая физику, Вы имеете большие возможности продолжить свое образование в техническом ВУЗе. Для этого потребуется параллельное углубление знаний по математике, химии, языку, реже другие предметы. Победитель республиканской олимпиады, Савич Егор, заканчивает один из факультетов МФТИ, на котором, большие требования предъявляются к знаниям по химии. Если требуется помощь в ГИА по химии , то обращайтесь к профессионалам, Вам точно окажут квалифицированную и своевременную помощь.

Смотрите еще:

Величины называются скалярными (скалярами), если они после выбора единицы измерения полностью характеризуются одним числом. Примерами скалярных величин являются угол, поверхность, объем, масса, плотность, электрический заряд, сопротивление, температура.

Следует различать два типа скалярных величин: чистые скаляры и псевдоскаляры.

3.1.1. Чистые скаляры.

Чистые скаляры полностью определяются одним числом, не зависящим от выбора осей отсчета. Примером чистых скаляров могут служить температура и масса.

3.1.2. Псевдоскаляры.

Как и чистые скаляры, псевдоскаляры определяются с помощью одного числа, абсолютная величина которого не зависит от выбора осей отсчета. Однако знак этого числа зависит от выбора положительных направлений на осях координат.

Рассмотрим, например, прямоугольный параллелепипед, проекции ребер которого на прямоугольные оси координат соответственно равны Объем этого параллелепипеда определяется с помощью определителя

абсолютная величина которого не зависит от выбора прямоугольных осей координат. Однако, если переменить положительное направление на одной из осей координат, то определитель изменит знак. Объем - это псевдоскаляр. Псевдоскалярами являются также угол, площадь, поверхность. Ниже (п. 5.1.8) мы увидим, что псевдоскаляр представляет собой в действительности тензор особого рода.

Векторные величины

3.1.3. Ось.

Ось - это бесконечная прямая, на которой выбрано положительное направление. Пусть такая прямая, а направление от

считается положительным. Рассмотрим отрезок на этой прямой и положим, что число, измеряющее длину равно а (рис. 3.1). Тогда алгебраическая длина отрезка равна а, алгебраическая длина отрезка равна - а.

Если взять несколько параллельных прямых, то, определив положительное направление на одной из них, мы тем самым определяем его на остальных. Иначе обстоит дело, если прямые не параллельны; тогда нужно специально уславливаться относительно выбора положительного направления для каждой прямой.

3.1.4. Направление вращения.

Пусть ось. Вращение относительно оси назовем положительным или прямым, если оно осуществляется для наблюдателя, стоящего вдоль положительного направления оси, справа и налево (рис. 3.2). В противном случае оно называется отрицательным или обратным.

3.1.5. Прямые и обратные трехгранники.

Пусть некоторый трехгранник (прямоугольный или непрямоугольный). Положительные направления выбраны на осях соответственно от О к х, от О к у и от О к z.

Пугающие школьника два слова - вектор и скаляр - на самом деле не являются страшными. Если подойти к теме с интересом, то все можно понять. В данной статье рассмотрим, какая величина является векторной, а какая скалярной. Точнее, приведем примеры. Каждый ученик, наверное, обращал внимание, что в физике некоторые величины обозначаются не только символом, но и стрелкой сверху. Что они обозначают? Об этом будет сказано ниже. Постараемся разобраться, чем отличается от скалярной.

Примеры векторов. Как они обозначаются

Что подразумевается под вектором? То, что характеризует движение. Не важно, в пространстве или на плоскости. Какая величина является векторной вообще? Например, летит самолет с определенной скоростью на какой-то высоте, имеет конкретную массу, начал движение из аэропорта с нужным ускорением. Что относится к движению самолета? Что заставило его лететь? Конечно, ускорение, скорость. Векторные величины из курса физики являются наглядными примерами. Говоря прямо, векторная величина связана с движением, перемещением.

Вода тоже движется с определенной скоростью с высоты горы. Видите? Движение осуществляется за счет не объема или массы, а именно скорости. Теннисист дает возможность мячику двигаться при помощи ракетки. Он задает ускорение. К слову сказать, приложенная в данном случае сила также является векторной величиной. Потому что она получается вследствие заданных скоростей и ускорений. Сила способна также меняться, осуществлять конкретные действия. Ветер, который колышет листья на деревьях, тоже можно считать примером. Так как имеется скорость.

Положительные и отрицательные величины

Векторной величиной называется величина, которая имеет направление в окружающем пространстве и модуль. Снова появилось пугающее слово, на этот раз модуль. Представьте, что нужно решить задачку, где будет фиксироваться отрицательное значение ускорения. В природе отрицательных значений, казалось бы, не существует. Как скорость может быть отрицательной?

У вектора есть такое понятие. Это касается, например, сил, которые приложены к телу, но имеют разные направления. Вспомните третий где действие равно противодействию. Ребята перетягивают канат. Одна команда в синих футболках, вторая - в желтых. Вторые оказываются сильнее. Допустим, что вектор их силы направлен положительно. В то же время у первых не получается натянуть канат, но пытаются. Возникает противодействующая сила.

Векторная или скалярная величина?

Поговорим о том, чем отличается векторная величина от скалярной. Какой параметр не имеет никакого направления, но имеет свое значение? Перечислим некоторые скалярные величины ниже:


Имеют ли все они направление? Нет. Какая величина является векторной, а какая скалярной, можно показать только наглядными примерами. В физике есть такие понятия не только в разделе "Механика, динамика и кинематика", а так же в параграфе "Электричество и магнетизм". Сила Лоренца, - все это так же векторные величины.

Вектор и скаляр в формулах

В учебниках по физике часто встречаются формулы, в которых есть стрелочка сверху. Вспомните второй закон Ньютона. Сила ("F" со стрелочкой сверху) равна произведению массы ("m") и ускорения ("a" со стрелочкой сверху). Как говорилось выше, сила и ускорение являются величинами векторными, а вот масса - скалярной.

К сожалению, не во всех изданиях есть обозначение этих величин. Наверное, сделано это для упрощения, чтобы школьников не вводить в заблуждение. Лучше всего покупать те книги и справочники, в которых обозначены векторы в формулах.

То, какая величина является векторной, покажет иллюстрация. Рекомендуется обращать внимание на картинки и схемы на уроках физики. Векторные величины имеют направление. Куда направлена Конечно же, вниз. Значит, стрелочка будет показана в том же направлении.

В технических вузах изучают физику углубленно. В рамках многих дисциплин преподаватели рассказывают о том, какие величины являются скалярными и векторными. Такие знания требуются в сферах: строительство, транспорт, естественные науки.