Конспект урока "Электромагнитная волна. Свойства электромагнитных волн"

Владимирский областной
промышленно – коммерческий
лицей

р е ф е р а т

Электромагнитные волны

Выполнил:
ученик 11 «Б» класс
Львов Михаил
Проверил:

Владимир 2001г.

1. Вступление ……………………………………………………… 3

2. Понятие волна и ее характеристики…………………………… 4

3. Электромагнитные волны……………………………………… 5

4. Экспериментальное доказательство существования
электромагнитных волн………………………………………… 6

5. Плотность потока электромагнитного излучения ……………. 7

6. Изобретение радио …………………………………………….… 9

7. Свойства электромагнитных волн ………………………………10

8. Модуляция и детектирование…………………………………… 10

9. Виды радиоволн и их распространение………………………… 13

Вступление

Волновые процессы чрезвычайно широко распространены в природе. В природе существует два вида волн: механические и электромагнитные. Ме­ханические волны распространяются в веществе: газе, жидкости или твердом теле. Электромагнитные волны не нуждаются в каком-либо веществе для своего распростра­нения, к которым, в частности, от­носятся радиоволны и свет. Электромагнитное поле может су­ществовать в вакууме, т. е. в пространстве, не содержащем ато­мов. Несмотря на существенное отличие электромагнитных волн от механических, электромагнитные волны при своем распростра­нении ведут себя подобно механическим. Но подобно колебаниям все виды волн описываются количественно одинаковыми или почти одинаковыми законами. В своей работе я постараюсь рассмотреть причины возникновения электромагнитных волн, их свойства и применение в нашей жизни.

Понятие волна и ее характеристики

Волной называют колебания, распростра­няющиеся в пространстве с течением времени.

Важнейшей ха­рактеристикой волны является ее скорость. Волны любой природы не распространяются в пространстве мгновенно. Их скорость конечна.

При распространении механической волны движе­ние передается от одного участка тела к другому. С передачей движения связана передача энергии. Ос­новное свойство всех волн незави­симо от их природы состоит в пере­носе ими анергии без переноса вещества. Энергия поступает от источ­ника, возбуждающего колебания на­чала шнура, струны и т. д., и распро­страняется вместе с волной. Через любое поперечное сечение непрерывно течет энергия. Эта энергия слагается из кинети­ческой энергии движения участков шнура и потенциальной энергии его упругой деформации. Постепенное уменьшение амплитуды колебаний, при распространении волны связано с превращением части механической энергии во внутреннюю.

Если заставить конец растянутого резинового шнура колебаться гармонически с опреде­ленной частотой v, то эти колеба­ния начнут распространяться вдоль шнура. Колебания любого участка шнура происходят с той же часто­той и амплитудой, что и колебания конца шнура. Но только эти колеба­ния сдвинуты по фазе друг относи­тельно друга. Подобные волны назы­ваются монохроматическими .

Если сдвиг фаз между колеба­ниями двух точек шнура равен 2п, то эти точки колеблются совершенно одинаково: ведь соs(2лvt+2л) = =соs2п vt . Такие колебания назы­ваются синфазными (происходят в одинаковых фазах).

Расстояние между ближайшими друг к другу точками, колеблющими­ся в одинаковых фазах, называется длиной волны.

Связь между длиной волны λ, частотой v и скоростью распростра­нения волны c. За один период ко­лебаний волна распространяется на расстояние λ. Поэтому ее скорость определяется формулой

Так как период Т и частота v свя­заны соотношением T = 1 / v

Скорость волны равна произведению длины волны на частоту колебаний.

Электромагнитные волны

Теперь перейдем к рассмотрению непосредственно электромагнитных волн.

Фунда­ментальные законы природы могут дать гораздо боль­ше, чем заключено в тех фактах, на основе которых они получены. Одним из таких относятся открытые Макс­веллом законы электромагнетизма.

Среди бесчисленных, очень инте­ресных и важных следствий, выте­кающих из максвелловских законов электромагнитного поля, одно заслу­живает особого внимания. Это вы­вод о том, что электромагнитное взаимодействие распространяется с конечной скоростью.

Согласно теории близкодействия Перемещение заряда меняет электрическое поле вблизи него. Это переменное электрическое поле порождает переменное магнитное поле в соседних областях пространства. Переменное же магнитное поле в свою очередь порождает переменное электрическое поле и т. д.

Перемещение заряда вызывает, таким образом, «всплеск» электро­магнитного поля, который, распространяясь, охватывает все большие области окружающего пространства.

Максвелл математически дока­зал, что скорость распространения этого процесса равна скорости све­та в вакууме.

Пред­ставьте себе, что электрический заряд не просто сместился из одной точки в другую, а приведен в быстрые колебания вдоль некоторой прямой. Тогда элек­трическое поле в непосредственной близости от заряда начнет периоди­чески изменяться. Период этих изме­нений, очевидно, будет равен периоду колебаний заряда. Переменное элек­трическое поле будет порождать пе­риодически меняющееся магнитное поле, а последнее в свою очередь вызовет появление переменного элек­трического поля уже на большем расстоянии от заряда и т.д.

В каждой точке пространства электрические и магнитные поля ме­няются во времени периодически. Чем дальше расположена точка от заряда, тем позднее достигнут ее ко­лебания полей. Следовательно, на разных расстояниях от заряда коле­бания происходят с различными фа­зами.

Направления колеблющихся век­торов напряженности электрическо­го поля и индукции магнитного по­ля перпендикулярны к направлению распространения волны.

Электромагнитная волна является поперечной.

Электромагнитные волны излу­чаются колеблющимися зарядами. При этом существенно, что скорость движения таких зарядов меняется со временем, т. е. что они движутся с ускорением. Наличие ускорения - главное условие излучения электро­магнитных волн. Электромагнитное поле излучается заметным образом не только при колебаниях заряда, но и при любом быстром изменении его скорости. Интенсивность излу­ченной волны тем больше, чем боль­ше ускорение, с которым движется заряд.

Максвелл был глубоко убежден в реальности электромагнитных волн. Но он не дожил до их эксперимен­тального обнаружения. Лишь через 10 лет после его смерти электро­магнитные волны были экспериментально получены Герцем.

Экспериментальное доказательство существования

электромагнитных волн

Электромагнитные волн не видны в отличие от механических, но тогда как же они были обнаружены? Для ответа на этот вопрос рассмотрим опыты Герца.

Электромагнитная волна образу­ется благодаря взаимной связи переменных электрических и магнитных полей. Изменение одного поля при­водит к появлению другого. Как известно, чем быстрее меня­ется со временем магнитная индук­ция, тем больше напряженность воз­никающего электрического поля. И в свою очередь, чем быстрее меняется напряженность электрического поля, тем больше магнитная индукция.

Для образования интенсивных электромагнитных волн необходимо создать электромагнитные колебания достаточно высокой частоты.

Колебания высокой частоты можно получить с помощью колебательного контура. Частота колебаний равна 1/ √ LС. От сюда видно, что она будет тем больше, чем меньше индуктивность и емкость контура.

Для получения электромагнитных волн Г. Герц использовал простое устройство, называемое сейчас вибратором Герца.

Это устройство представляет собой открытый колебательный контур.

К открытому контуру можно перейти от закрытого, если постепенно раздвигать пластины конденсатора, уменьшая их площадь и одновременно уменьшая число вит­ков в катушке. В конце концов, полу­чится просто прямой провод. Это и есть открытый колебательный кон­тур. Емкость и индуктивность вибратора Герца малы. Поэтому частота колебаний весьма велика.


В открытом контуре заряды не сосредоточены на концах, а распределены по всему проводнику. Ток в данный момент времени во всех сечениях проводника направлен в одну и ту же сторону, но сила тока неодинакова в различных сечениях проводника. На концах она равна нулю, а посредине достигает макси­мума (в обычных же цепях переменного тока сила тока во всех сечениях в данный момент вре­мени одинакова.) Электромагнитное поле также охватывает все пространство возле контура.

Герц получал элек­тромагнитные волны, возбуждая в вибраторе с помощью источника вы­сокого напряжения серию импульсов быстропеременного тока. Колебания электрических зарядов в вибраторе создают электромагнитную волну. Только колебания в вибраторе совер­шает не одна заряженная частица, а огромное число электронов, дви­жущихся согласованно. В электро­магнитной волне векторы Е и В пер­пендикулярны друг другу. Вектор Е лежит в плоскости, проходящей че­рез вибратор, а вектор В перпенди­кулярен этой плоскости. Излучение волн происходит с максимальной ин­тенсивностью в направлении, перпен­дикулярном оси вибратора. Вдоль оси излучения не происходит.

Электромагнитные волны реги­стрировались Герцем с помощью приемного вибратора (резонатора), представляющего собой такое же устройство, как и излучающий вибра­тор. Под действием переменного электрического поля электромагнит­ной волны в приемном вибраторе возбуждаются колебания тока. Если собственная частота приемного ви­братора совпадает с частотой элек­тромагнитной волны, наблюдается резонанс. Колебания в резонаторе происходят с большой амплитудой при расположении его параллельно излучающему вибратору. Герц обнаруживал эти колебания, наблюдав искорки в очень маленьком промежутке между проводниками приемного вибратора. Герц не только получил электромагнитные волны, но и обнаружил, что они ведут себя подобно другие видам волн.

Излучение электромагнитных волн, подвергаясь смене частоты колебания зарядов, меняет длину волны и приобретает различные свойства. Человек буквально окружен устройствами, которым присуще излучение и прием электромагнитных волн. Это сотовые телефоны, радио, телевещание, рентген-аппараты в медучреждениях и т.д. Даже тело человека обладает электромагнитным полем и, что очень интересно, каждый орган имеет свою частоту излучения. Распространяющиеся излучаемые заряженные частицы воздействуют друг на друга, провоцируя смену частоты колебания и выработку энергии, что может быть использовано как в созидательных, так и в разрушительных целях.

Электромагнитное излучение. Общая информация

Электромагнитное излучение представляет собой изменение состояния и интенсивности распространения электромагнитных колебаний, вызванных взаимодействием электрического и магнитного полей.

Глубоким изучением свойств характерных для электромагнитных излучений занимаются:

  • электродинамика;
  • оптика;
  • радиофизика.

Излучение электромагнитных волн создается и распространяется благодаря колебанию зарядов, в процессе чего выделяется энергия. Они обладают характером распространения, подобным механическим волнам. Движению зарядов присуще ускорение – с течением времени их скорость меняется, что является основополагающим условием для излучения электромагнитных волн. Мощность волны напрямую связана с силой ускорения и прямо пропорциональна ей.

Показатели, определяющие характерные особенности электромагнитного излучения:

  • частота колебания заряженных частиц;
  • длина волны излучаемого потока;
  • поляризация.

Электрическое поле, которое находится наиболее близко к заряду, подверженному колебаниям, претерпевает изменения. Промежуток времени, затраченный на эти изменения, будет равен промежутку времени колебаний заряда. Движение заряда можно сравнить с колебаниями тела, подвешенного на пружине, разница лишь в частоте перемещения.

К понятию «излучение» относятся электромагнитные поля, которые устремляются как можно дальше от источника возникновения и теряют свою интенсивность с увеличением расстояния, образуя волну.

Распространение электромагнитных волн

Труды Максвелла и открытые им законы электромагнетизма позволяют извлечь значительно больше информации, нежели могут представить факты, на основе которых проводится исследование. Например, одним из выводов на основе законов электромагнетизма выступает заключение, что электромагнитное взаимодействие имеет конечную скорость распространения.

Если следовать теории дальнодействия, то получаем, что сила, которая оказывает воздействие на электрический заряд, находящийся в неподвижном состоянии, изменяет свои показатели при смене местоположения соседнего заряда. Согласно этой теории заряд буквально «ощущает» сквозь вакуум присутствие себе подобного и мгновенно перенимает действие.

Сформировавшиеся понятия о близкодействии имеют совершенно другой взгляд на происходящее. Заряд, перемещаясь, обладает переменным электрическим полем, которое, в свою очередь, способствует возникновению переменного магнитного поля в близлежащем пространстве. После чего переменное магнитное поле провоцирует возникновение электрического и так цепочкой далее.

Таким образом происходит «возмущение» электромагнитного поля, вызванное сменой места заряда в пространстве. Оно распространяется и, как результат, воздействует на существующее поле, изменяя его. Добравшись до соседнего заряда, «возмущение» вносит изменения в показатели силы, действующей на него. Происходит это спустя некоторое время после смещения первого заряда.

Вопросом принципа распространения электромагнитных волн увлеченно занимался Максвелл. Затраченное время и силы в итоге увенчались успехом. Он доказал наличие конечной скорости этого процесса и привел тому математическое обоснование.

Реальность существования электромагнитного поля подтверждается наличием конечной скорости «возмущения» и соответствует показателям скорости света в пространстве, лишенном атомов (вакууме).

Шкала электромагнитных излучений

Вселенная наполнена электромагнитными полями с разным диапазоном излучения и кардинально различающейся длиной волны, которая может варьироваться от нескольких десятков километров до ничтожной доли сантиметра. Они позволяют получать информацию об объектах, находящихся на огромных расстояниях от Земли.

На основе утверждения Джеймса Максвелла о разности длины электромагнитных волн была разработана специальная шкала, которая содержит классификацию диапазонов существующих частот и длин излучений, образующих переменное магнитное поле в пространстве.

В своих наработках Г. Герц и П. Н. Лебедев экспериментально доказали верность утверждений Максвелла и обосновали тот факт, что излучение света – это волны электромагнитного поля, характеризующиеся небольшой длиной, которые образуются путем естественной вибрации атомов и молекул.

Между диапазонами не наблюдается резких переходов, но они также не имеют четких границ. Какой бы ни была частота излучения, все пункты шкалы описывают электромагнитные волны, которые появляются благодаря изменению положения заряженных частиц. На свойства зарядов оказывает влияние длина волны. При изменении ее показателей изменяется отражающая, проникающая способности, уровень видимости и т.д.

Характерные особенности электромагнитных волн дают им возможность свободно распространяться как в вакууме, так и в пространстве, заполненном веществом. Нужно отметить, что, перемещаясь в пространстве, излучение меняет свое поведение. В пустоте скорость распространения излучения не меняется, потому частота колебаний жестко взаимосвязана с длиной волны.

Электромагнитные волны разных диапазонов и их свойства

К электромагнитным волнам относятся:

  • Низкочастотные волны. Характеризуются частотой колебаний не более 100 КГц. Данный диапазон применяется для работы электрических устройств и двигателей, например, микрофона или громкоговорителя, телефонных сетей, а также в области радиовещания, киноиндустрии и др. Волны низкочастотного диапазона отличаются от тех, что обладают более высокой частотой колебаний, фактическим падением скорости распространения пропорционально квадратному корню их частоты. Весомый вклад в открытие и изучение низкочастотных волн сделали Лодж и Тесла.
  • Радиоволны. Открытие Герцем радиоволн в 1886 г. подарило миру возможность передавать информацию, не используя провода. Длина радиоволны влияет на характер ее распространения. Они, подобно частотам звуковых волн, возникают благодаря переменному току (в процессе осуществления радиосвязи переменный ток протекает в приемник – антенну). Высокочастотная радиоволна способствует значительному испусканию радиоволн в окружающее пространство, что дает уникальную возможность передавать информацию на большие расстояния (радио, телевидение). Подобного рода сверхвысокочастотные излучения используются для осуществления связи в условиях космоса, а также в быту. Например, микроволновая СВЧ-печь, излучающая радиоволны, стала хорошей помощницей для хозяек.
  • Инфракрасное излучение (еще называют «тепловое»). Согласно классификации шкалы электромагнитных излучений, область распространения инфракрасных излучений находится после радиоволн и перед видимым светом. Инфракрасные волны излучают все тела, испускающие тепло. Примерами источников таких излучений выступают печи, батареи, используемые для отопления, основанные на теплоотдаче воды, лампы накаливания. На сегодняшний день разработаны специальные устройства, которые позволяют увидеть в полной темноте предметы, от которых исходит тепло. Такими природными датчиками распознавания тепла в области глаз обладают змеи. Это позволяет им отслеживать добычу и охотиться ночью. Человек применяет инфракрасные излучения, например, для обогрева зданий, для сушки овощей, а также древесины, в области военного дела (например, приборы ночного видения или же тепловизоры), для беспроводного управления аудиоцентром или телевизором и другими устройствами с помощью пульта.
  • Видимый свет. Обладает световым спектром от красного до фиолетового и воспринимается глазом человека, что является главной отличительной чертой. Цвет, излучаемый разной длиной волны, оказывает электрохимическое воздействие на систему визуального восприятия человека, но не входит в раздел свойств электромагнитных волн данного диапазона.
  • Ультрафиолетовое излучение. Не фиксируется глазом человека и обладает длиной волны по значению меньше, нежели у фиолетового света. В небольших дозировках лучи ультрафиолета вызывают лечебный эффект, способствуют выработке витамина Д, осуществляют бактерицидное воздействие и положительно влияют на центральную нервную систему. Преизбыточная насыщенность окружающей среды ультрафиолетовыми лучами приводит к повреждению кожных покровов и разрушению сетчатки глаза, потому офтальмологи рекомендуют использование солнечных очков в летние месяцы. Ультрафиолетовое излучение применяют в медицине (лучи ультрафиолета используются для кварцевых ламп), для проверки подлинности денежных купюр, в развлекательных целях на дискотеках (подобное освещение заставляет светиться светлые материалы), а также для определения годности продуктов питания.
  • Рентгеновское излучение. Такие волны не заметны для человеческого глаза. Они обладают удивительным свойством проникать сквозь слои вещества, избегая сильного поглощения, что недоступно лучам видимого света. Излучение способствует возникновению свечения некоторых разновидностей кристаллов и оказывает воздействие на фотографическую пленку. Используется в области медицины для диагностирования заболеваний внутренних органов и для лечения определенного списка болезней, для проверки внутреннего устройства изделий на предмет наличия дефектов, а также сварных швов в технике.
  • Гамма-излучение. Наиболее коротковолновое электромагнитное излучение, испускающее ядра атома. Уменьшения длины волны приводит к изменениям качественных показателей. Гамма-излучение имеет проникающую способность, во много раз превышающую рентгеновские лучи. Может проходить сквозь бетонную стену толщиной один метр и даже сквозь свинцовые преграды толщиной в несколько сантиметров. В ходе распада веществ или единения происходит выброс составных элементов атома, что получило название радиация. Такие волны относят к списку радиоактивных излучений. При взрыве ядерной боеголовки на короткое время образуется электромагнитное поле, которое является продуктом реакции между лучами гамма-спектра и нейтронами. Оно же выступает основным элементом ядерного оружия, оказывающим поражающее воздействие, полностью блокирует или нарушает работу радиоэлектроники, проводной связи и систем, обеспечивающих электроснабжение. Также при взрыве ядерного оружия высвобождается много энергии.

Выводы

Волны электромагнитного поля, обладая определенной длиной и находясь в определенном диапазоне колебания, могут оказывать как положительные влияние на организм человека и его уровень адаптации к окружающей среде, благодаря разработке вспомогательных электрических приборов, так и отрицательное, и даже разрушающее воздействие на здоровье и среду обитания человека.

Электромагнитные волны – это результат многолетних споров и тысяч экспериментов. Доказательство наличия сил природного происхождения, способных перевернуть сложившееся общество. Это фактическое принятие простой истины – мы слишком мало знаем о мире, в котором живем.

Физика – королева среди наук о природе, способная дать ответы на вопросы происхождения не только жизни, но и самого мира. Она дает ученым способность изучать электрическое и магнитное поле, взаимодействие которых порождает ЭМВ (электромагнитные волны).

Что такое электромагнитная волна

Не так давно на экраны нашей страны вышел фильм «Война токов» (2018), где с ноткой художественного вымысла рассказывается о споре двух великих ученых Эдисона и Теслы. Один пытался доказать выгоду от постоянного тока, другой — от переменного. Эта продолжительная битва закончилась только в седьмом году двадцать первого века.

В самом начале «сражения» другой ученый, занимаясь проработкой теории относительности, описывал электричество и магнетизм как похожие явления.

В тридцатом году девятнадцатого века физик английского происхождения Фарадей открыл явление электромагнитной индукции и ввел термин единства поля электрического и магнитного. Также он утверждал, что движение в этом поле ограничено скоростью света.

Чуть позже теория английского ученого Максвелла поведала о том, что электричество вызывает магнитный эффект, а магнетизм — появление электрического поля. Поскольку оба этих поля движутся в пространстве и времени, то образуют возмущения – то есть электромагнитные волны.

Говоря проще электромагнитная волна – это пространственное возмущение электромагнитного поля.

Экспериментально существование ЭМВ доказал немецкий ученый Герц.

Электромагнитные волны, их свойства и характеристика

Электромагнитные волны характеризуются следующими факторами:

  • длиной (достаточно широким диапазоном);
  • частотой;
  • интенсивностью (или амплитудой колебания);
  • количеством энергии.

Основное свойство всех электромагнитных излучений – это величина длины волны (в вакууме), которая обычно указывается в нанометрах для видимого светового спектра.

Каждый нанометр представляет тысячную часть микрометра и измеряется расстоянием между двумя последовательными пиками (вершинами).

Соответствующая частота излучения волны – это число синусоидальных колебаний и обратная пропорциональность длине волны.

Частота обычно измеряется в Герцах. Таким образом, более длинные волны соответствуют более низкой частоте излучения, а более короткие — высокой частоте излучения.

Основные свойства волн:

  • преломление;
  • отражение;
  • поглощение;
  • интерференция.

Скорость электромагнитной волны

Фактическая скорость распространения электромагнитной волны зависит от материала, которым обладает среда, ее оптической плотности и наличия такого фактора как давление.

Кроме того, различные материалы имеют разную плотность «упаковки» атомов, чем ближе они расположены, тем меньше расстояние и выше скорость. В результате скорость электромагнитной волны зависит от материала, через который она движется.

Подобные эксперименты ставятся в адронном коллайдере, где главным инструментом воздействия является заряженная частица. Изучение электромагнитных явлений происходит там на квантовом уровне, когда свет раскладывается на мельчайшие частицы – фотоны. Но квантовая физика – это отдельная тема.

Согласно теории относительности, наибольшая скорость распространения волны не может превышать световую. Конечность скоростного предела в своих трудах описал Максвелл, объясняя это наличием нового поля – эфир. Современная официальная наука подобную взаимосвязь пока не изучала.

Электромагнитное излучение и его виды

Электромагнитное излучение состоит из электромагнитных волн, которые наблюдаются в виде колебания электрического и магнитного полей, распространяющиеся на скорости света (300 км за секунду в вакууме).

Когда ЭМ-излучение взаимодействует с веществом, его поведение качественно меняется по мере изменения частоты. Отчего оно преобразуется в:

  1. Радиоизлучение. На радиочастотах и микроволновых частотах эм–излучение взаимодействует с веществом в основном в виде общего набора зарядов, которые распределены по большому количеству затронутых атомов.
  2. Инфракрасное излучение. В отличие от низкочастотного радиоизлучения и СВЧ-излучения, инфракрасный излучатель обычно взаимодействует с диполями, присутствующими в отдельных молекулах, которые по мере вибрации изменяются на концах химической связи на атомном уровне.
  3. Видимое световое излучение. По мере того как частота увеличивается в видимый ряд, фотоны имеют достаточную энергию для изменения скрепленной структуры некоторых отдельно взятых молекул.
  4. Ультрафиолетовое излучение. Частота увеличивается. В ультрафиолетовых фотонах теперь достаточно энергии (более трех вольт), чтобы воздействовать вдвойне на связи молекул, постоянно химически их перестраивая.
  5. Ионизирующее излучение. На самых высоких частотах и наименьших по длине волны. Поглощение этих лучей материей затрагивает весь гамма-спектр. Самый известный эффект – радиация.

Что является источником электромагнитных волн

Мир, согласно молодой теории о происхождении всего, возник благодаря импульсу. Он освободил колоссальную энергию, которую назвали большим взрывом. Так в истории мироздания появилась первая эм-волна.

В настоящее время к источникам формирования возмущений относятся:

  • эмв излучает искусственный вибратор;
  • результат колебания атомных групп или частей молекул;
  • если происходит воздействие на внешнюю оболочку вещества (на атомно-молекулярном уровне);
  • эффект схожий со световым;
  • при ядерном распаде;
  • последствие торможения электронов.

Шкала и применение электромагнитных излучений

Под шкалой излучения понимается большой диапазон частоты волны от 3·10 6 ÷10 -2 до 10 -9 ÷ 10 -14 .

Каждая часть электромагнитного спектра обладает обширной областью применения в нашей повседневной жизни:

  1. Волны маленькой длины (микроволны). Данные электроволны используются в качестве спутникового сигнала, поскольку способны миновать атмосферу земли. Также немного усиленный вариант используется для разогрева и готовки на кухне – это микроволновая печь. Принцип приготовления прост – под действием микроволнового излучения поглощаются и ускоряются молекулы воды, отчего блюдо нагревается.
  2. Длинные возмущения используется в радиотехнологиях (радиоволны). Их частота не позволяет пройти облака и атмосферу, благодаря чему нам доступно Фм-радио и телевидение.
  3. Инфракрасное возмущение непосредственно связано с теплом. Увидеть его практически невозможно. Попробуйте заметить без специального оборудования луч из пульта управления вашего телевизора, музыкального центра или магнитолы в машине. Приборы, способные считывать подобное волны, используются в армиях стран (прибор ночного виденья). Также в индуктивных плитах на кухнях.
  4. Ультрафиолет также имеет отношение к теплу. Самый мощный природный «генератор» такого излучения – это солнце. Именно из-за действия ультрафиолета на коже человека образуется загар. В медицине этот тип волн используется для дезинфекции инструментов, убивая микробы и .
  5. Гамма-лучи – это самый мощный тип излучения, в котором сконцентрировалось коротковолновое возмущение с большой частотой. Энергия, заключенная в эту часть электромагнитного спектра, дает лучам большую проникающую способность. Применима в ядерной физике – мирное, ядерное оружие – боевое применение.

Влияние электромагнитных волн на здоровье человека

Измерение влияния эмв на человека – это обязанность ученых. Но не нужно быть специалистом, чтобы оценить интенсивность ионизирующего излучения – оно провоцирует изменения на уровне ДНК человека, что влечет за собой такие серьезные заболевания как онкология.

Не зря пагубное воздействие катастрофы ЧАЭС считается одной самых опасных для природы. Несколько квадратных километров некогда красивой территории стали зоной полного отчуждения. До конца века взрыв на ЧАЭС представляет опасность, пока не закончится полураспад радионуклидов.

Некоторые типы эмв (радио, инфракрасные, ультрафиолет) не наносят человеку сильного вреда и представляют собой лишь дискомфорт. Ведь магнитное поле земли нами практически не ощущается, а вот эмв от мобильного телефона может вызвать головную боль (воздействие на нервную систему).

Для того чтобы обезопасить здоровье от электромагнетизма, следует просто использовать меры разумной предосторожности. Вместо сотен часов за компьютерной игрой выйти погулять.

Электромагнитные волны представляют собой распространение электромагнитных полей в пространстве и времени.

Как уже было отмечено выше, существование электромагнитных волн было теоретически предсказано великим английским физиком Дж.Максвеллом в 1864 году. Он проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.: всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Высказал гипотезу о существовании и обратного процесса: изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле. Максвелл впервые описывал динамику новой формы материи - электромагнитного поля, и вывел систему уравнений (уравнений Максвелла), связывающую характеристики электромагнитного поля с его источниками - электрическими зарядами и токами. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Рис.2 а, б иллюстрируют взаимное превращение электрического и магнитного полей.

Рисунок 2 - Взаимное превращение электрического и магнитного полей: а) Закон электромагнитной индукции в трактовке Максвелла; б) Гипотеза Максвелла. Изменяющееся электрическое поле порождает магнитное поле

Деление электромагнитного поля на электрическое и магнитное зависит от выбора системы отсчета. Действительно, вокруг зарядов, покоящихся в одной системе отсчета, существует только электрическое поле; однако эти же заряды будут двигаться относительно другой системы отсчета и порождать в этой системе отсчета, кроме электрического, еще и магнитное поле. Таким образом, теория Максвелла связала воедино электрические и магнитные явления.

Если возбудить с помощью колеблющихся зарядов переменное электрическое или магнитное поле, то в окружающем пространстве возникает последовательность взаимных превращений электрических и магнитных полей, распространяющихся от точки к точке. Оба эти поля являются вихревыми, причем векторы и расположены во взаимно перпендикулярных плоскостях. Процесс распространения электромагнитного поля схематически показан на рис.3. Этот процесс, являющийся периодическим во времени и пространстве, представляет собой электромагнитную волну.

Рисунок 3 - Процесс распространения электромагнитного поля

Эта гипотеза была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля.

Итак, из теории Максвелла вытекает ряд важных выводов - основных свойств электромагнитных волн.

Существуют электромагнитные волны, т.е. распространяющееся в пространстве и во времени электромагнитное поле.

В природе электрические и магнитные явления выступают как две стороны единого процесса.

Электромагнитные волны излучаются колеблющимися зарядами. Наличие ускорения - главное условие излучения электромагнитных волн, т.е.

  • - всякое изменение магнитного поля создает в окружающем пространстве вихревое электрическое поле (рис.2а).
  • - всякое изменение электрического поля возбуждает в окружающем пространстве вихревое магнитное поле, линии индукции которого расположены в плоскости, перпендикулярной линиям напряженности переменного электрического поля, и охватывают их (рис.2б).

Линии индукции возникающего магнитного поля образуют с вектором «правый винт». Электромагнитные волны поперечны - векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 4).


Рисунок 4 - Поперечные электромагнитные волны

Периодические изменения электрического поля (вектора напряженности Е) порождают изменяющееся магнитное поле (вектор индукции В), которое в свою очередь порождает изменяющееся электрическое поле. Колебания векторов Е и В происходят во взаимно перпендикулярных плоскостях и перпендикулярно линии распространения волны (вектору скорости) и в любой точке совпадают по фазе. Силовые лини электрического и магнитного полей в электромагнитной волне являются замкнутыми. Такие поля называют вихревыми.

Электромагнитные волны распространяются в веществе с конечной скоростью, и это ещё раз подтвердило справедливость теории близкодействия.

Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия.

Такие волны могут распространяться не только в газах, жидкостях и твердых средах, но и в вакууме.

Скорость электромагнитных волн в вакууме с=300000 км/с. Скорость распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.

Распространение электромагнитной волны в диэлектрике представляет собой непрерывное поглощение и переизлучение электромагнитной энергии электронами и ионами вещества, совершающими вынужденные колебания в переменном электрическом поле волны. При этом в диэлектрике происходит уменьшение скорости волны.

Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 4), ориентированную перпендикулярно направлению распространения волны, то за малое время Дt через площадку протечет энергия ДWэм, равная

ДWэм = (wэ + wм)хSДt.

При переходе из одной среды в другую частота волны не изменяется.

Электромагнитные волны могут поглощаться веществом. Это обусловлено резонансным поглощением энергии заряженными частицами вещества. Если собственная частота колебаний частиц диэлектрика сильно отличается от частоты электромагнитной волны, поглощение происходит слабо, и среда становится прозрачной для электромагнитной волны.

Попадая на границу раздела двух сред, часть волны отражается, а часть проходит в другую среду, преломляясь. Если второй средой является металл, то прошедшая во вторую среду волна быстро затухает, а большая часть энергии (особенно у низкочастотных колебаний) отражается в первую среду (металлы являются непрозрачными для электромагнитных волн).

Распространяясь в средах, электромагнитные волны, как и всякие другие волны, могут испытывать преломление и отражение на границе раздела сред, дисперсию, поглощение, интерференцию; при распространении в неоднородных средах наблюдаются дифракция волн, рассеяние волн и другие явления.

Из теории Максвелла следует, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало. Так, например, давление солнечного излучения, приходящего на Землю, на абсолютно поглощающую поверхность составляет примерно 5 мкПа.

Первые эксперименты по определению давления излучения на отражающие и поглощающие тела, подтвердившие вывод теории Максвелла, были выполнены выдающимся физиком Московского университета П.Н. Лебедевым в 1900 г. Обнаружение столь малого эффекта потребовало от него незаурядной изобретательности и мастерства в постановке и проведении эксперимента. В 1900 г. ему удалось измерить световое давление на твердые тела, а в 1910 г. - на газы. Основную часть прибора П.И. Лебедева для измерения давления света составляли лёгкие диски диаметром 5 мм, подвешиваемые на упругой нити (рис. 5) внутри откачанного сосуда.

Рисунок 5 - Эксперимент П.И. Лебедева

Диски изготавливались из различных металлов, и их можно было заменять при проведении экспериментов. На диски направлялся свет от сильной электрической дуги. В результате воздействия света на диски нить закручивалась, и диски отклонялись. Результаты опытов П.И. Лебедева полностью согласовывались с электромагнитной теорией Максвелла и имели огромное значение для ее утверждения.

Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс Это соотношение между массой и энергией электромагнитного поля в единичном объеме является универсальным законом природы. Согласно специальной теории относительности, оно справедливо для любых тел независимо от их природы и внутреннего строения.

Так как давление световой волны очень мало, то оно не играет существенной роли в явлениях, с которыми мы сталкиваемся в обыденной жизни. Но в противоположных по масштабам космических и микроскопических системах роль этого эффекта резко возрастает. Так, гравитационное притяжение внешних слоев вещества каждой звезды к центру уравновешивается силой, значительный вклад в которую вносит давление света, идущего из глубины звезды наружу. В микромире давление света проявляется, например, в явлении световой отдачи атома. Ее испытывает возбужденный атом при излучении им света.

Световое давление играет значительную роль в астрофизических явлениях, в частности, в образовании кометных хвостов, звезд и т.д. Световое давление достигает значительной величины в местах фокусировки излучения мощных квантовых генераторов света (лазеров). Так, давление сфокусированного лазерного излучения на поверхность тонкой металлической пластинки может привести к её пробою, то есть к появлению отверстия в пластинке. Таким образом, электромагнитное поле обладает всеми признаками материальных тел - энергией, конечной скоростью распространения, импульсом, массой. Это говорит о том, что электромагнитное поле является одной из форм существования материи.

М. Фарадей ввел понятие поля:

    вокруг покоящегося заряда возникает электростатическое поле,

    вокруг движущихся зарядов (тока) возникает магнитное поле.

В 1830 г. М. Фарадей открыл явление электромагнитной индукции: при изменении магнитного поля возникает вихревое электрическое поле.

Рисунок 2.7 - Вихревое электрическое поле

где,
- вектор напряженности электрического поля,
- вектор магнитной индукции.

Переменное магнитное поле создает вихревое электрическое поле.

В 1862 г. Д.К. Максвелл выдвинул гипотезу: при изменении электрического поля возникает вихревое магнитное поле.

Возникла идея о едином электромагнитном поле.

Рисунок 2.8 - Единое электромагнитное поле.

Переменное электрическое поле создает вихревое магнитное поле.

Электромагнитное поле - это особая форма материи - совокупность электрических и магнитных полей. Переменные электрические и магнитные поля существуют одновременно и образуют единое электромагнитное поле. Оно материально:

Проявляет себя в действии как на покоящиеся, так и на движущиеся заряды;

Распространяется с большой, но конечной скоростью;

Существует независимо от нашей воли и желаний.

При скорости заряда, равной нулю, существует только электрическое поле. При постоянной скорости заряда возникает электромагнитное поле.

При ускоренном движении заряда происходит излучение электромагнитной волны, кото­рая распространяется в пространстве с конечной скоростью.

Разработка идеи электромагнитных волн принадлежит Максвеллу, но уже Фарадей догадывался об их существовании, хотя побоялся опубликовать работу (она была прочитана более чем через 100 лет после его смерти).

Главное условие возникновения электромагнитной волны - ускоренное движение электрических зарядов.

Что собой представляет электромагнитная волна, легко представить на следующем примере. Если на водную гладь бросить камушек, то на поверхности образуются расходящиеся кругами волны. Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения. Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля. Меняющееся во времени электромагнитное поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимно связаны.

Основным источником спектра электромагнитных волн является звезда Солнце. Часть спектра электромагнитных волн видит глаз человека. Этот спектр лежит в пределах 380...780 нм (рис. 2.1). В области видимого спектра глаз ощущает свет по-разному. Электромагнитные колебания с различной длиной волн вызывают ощущение света с различной окраской.

Рисунок 2.9 - Спектр электромагнитных волн

Часть спектра электромагнитных волн используется для целей радиотелевизионного вешания и связи. Источник электромагнитных волн - провод (антенна), в котором происходит колебание электрических зарядов. Процесс формирования полей, начавшийся вблизи провода, постепенно, точку за точкой, захватывает все пространство. Чем выше частота переменного тока, проходящего по проводу и порождающего электрическое или магнитное поле, тем интенсивнее создаваемые проводом радиоволны заданной длины.

Ра́дио (лат. radio - излучаю, испускаю лучи ← radius - луч) - разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Радиоволны (от радио...), электромагнитные волны с длиной волны > 500 мкм (частотой < 6×10 12 Гц).

Радиоволны - это электрические и магнитные поля, меняющиеся во времени. Скорость распространения радиоволн в свободном пространстве составляет 300000 км/с. Исходя из этого, можно определить длину радиоволны (м).

λ=300/f, гдеf - частота (МГц)

Звуковые колебания воздуха, созданные во время телефонного разговора, преобразуются микрофоном в электрические колебания звуковой частоты, которые по проводам передаются к аппаратуре абонента. Там, на другом конце линии, они с помощью излучателя телефона преобразуются в колебания воздуха, воспринимаемые абонентом как звуки. В телефонии средством связи цепи являются провода, в радиовещании - радиоволны.

«Сердцем» передатчика любой радиостанции является генератор - устройство, вырабатывающее колебания высокой, но строго постоянной для данной радиостанции частоты. Эти колебания радиочастоты, усиленные до необходимой мощности, поступают в антенну и возбуждают в окружающем ее пространстве электромагнитные колебания точно такой же частоты - радиоволны. Скорость удаления радиоволн от антенны радиостанции равна скорости света: 300 000 км/с, что почти в миллион раз быстрее распространения звука в воздухе. Это значит, что если на Московской радиовещательной станции в некоторый момент времени включили передатчик, то ее радиоволны меньше чем за 1 /30 с дойдут до Владивостока, а звук за это время успеет распространиться всего, лишь на 10- 11 м.

Радиоволны распространяются не только в воздухе, но и там, где его нет, например, в космическом пространстве. Этим они отличаются от звуковых волн, для которых совершенно необходим воздух или какая-либо другая плотная среда, например вода.

Электромагнитная волна – распространяющееся в пространстве электромагнитное поле (колебания векторов
). Вблизи заряда электрическое и магнитное поля изменяются со сдвигом фаз p/2.

Рисунок 2.10 - Единое электромагнитное поле.

На большом расстоянии от заряда электрическое и магнитное поля изменяются синфазно.

Рисунок 2.11 - Синфазное изменение электрического и магнитного полей.

Электромагнитная волна поперечна . Направление скорости электромагнитной волны совпадает с направлением движения правого винта при повороте ручки буравчика вектора к вектору .

Рисунок 2.12 - Электромагнитная волна.

Причем в электромагнитной волне выполняется соотношение
, где с – скорость света в вакууме.

Максвелл теоретически рассчитал энергию и скорость электромагнитных волн.

Таким образом, энергия волны прямо пропорциональна четвертой степени частоты . Значит, чтобы легче зафиксировать волну, необходимо, чтобы она была высокой частоты.

Электромагнитные волны были открыты Г. Герцем (1887).

Закрытый колебательный контур электромагнитных волн не излучает: вся энергия электрического поля конденсатора переходит в энергию магнитного поля катушки. Частота колебаний определяется параметрами колебательного контура:
.

Рисунок 2.13 - Колебательный контур.

Для увеличения частоты необходимо уменьшить L и C, т.е. развернуть катушку до прямого провода и, т.к.
, уменьшить площадь пластин и развести их на максимальное расстояние. Отсюда видно, что мы получим, по существу, прямой проводник.

Такой прибор называется вибратором Герца. Середина разрезается и подсоединяется к высокочастотному трансформатору. Между концами проводов, на которых закрепляются маленькие шаровые кондукторы, проскакивает электрическая искра, которая и является источником электромагнитной волны. Волна распространяется так, что вектор напряженности электрического поля колеблется в плоскости, в которой расположен проводник.

Рисунок 2.14 - Вибратор Герца.

Если параллельно излучателю расположить такой же проводник (антенну), то заряды в нем придут в колебательное движение и между кондукторами проскакивают слабые искры.

Герц обнаружил электромагнитные волны на опыте и измерил их скорость, которая совпала с рассчитанной Максвеллом и равной с=3 . 10 8 м/с.

Переменное электрическое поле порождает переменное магнитное поле, которое, в свою очередь, порождает переменное электрическое поле, то есть антенна, возбудившее одно из полей, вызывает появление единого электромагнитного поля. Важнейшее свойство этого поля в том, что оно распространяется в виде электромагнитных волн.

Скорость распространения электромагнитных волн в среде без потерь зависит от относительно диэлектрической и магнитной проницаемости среды. Для воздуха магнитная проницаемость среды равняется единице, следовательно, скорость распространения электромагнитных волн в этом случае равна скорости света.

Антенной может служить вертикальный провод, питаемый от генератора высокой частоты. Генератор затрачивает энергию на ускорение движения свободных электронов в проводнике, а эта энергия преобразуется в переменное электромагнитное поле, то есть электромагнитные волны. Чем больше частота тока генератора, тем быстрее изменяется электромагнитное поле и интенсивнее излечение волн.

С проводом антенны связаны как электрическое поле, силовые линии которого начинаются на положительных и кончаются на отрицательных зарядах, так и магнитное поле, линии которого замыкаются вокруг тока провода. Чем меньше период колебаний, тем меньше времени остается для возвращения энергии связанных полей в провод (то есть, к генератору) и тем больше переходит ее в свободные поля, которые распространяются далее в виде электромагнитных волн. Эффективное излучения электромагнитных волн происходит при условии соизмеримости длины волны и длины излучающего провода.

Таким образом, можно определить, что радиоволна - это не связанное с излучателем и каналообразующими устройствами электромагнитное поле, свободно распространяющееся в пространстве в виде волны с частотой колебаний от 10 -3 до 10 12 Гц.

Колебания электронов в антенне создаются источником периодически изменяющейся ЭДС с периодом Т . Если в некоторый момент поле у антенны имело максимальное значение, то такое же значение оно будет иметь спустя время Т . За это время существовавшее в начальный момент у антенны электромагнитное поле переместится на расстояние

λ = υТ (1)

Минимальное расстояние между двумя точками пространства, поле в которых имеет одинаковое значение, называется длиной волны. Как следует из (1), длина волны λ зависит от скорости ее распространения и периода колебаний электронов в антенне. Так как частота тока f = 1 / T , то длина волны λ = υ / f .

Радиолиния включает в себя следующие основные части:

Передатчик

Приемник

Среда, в которой распространяются радиоволны.

Передатчик и приемник являются управляемыми элементами радиолинии, так как можно увеличить мощность передатчика, подключить более эффективную антенну и увеличить чувствительность приемника. Среда является неуправляемым элементом радиолинии.

Отличие линии радиосвязи от проводных линий заключается в том, что в проводных линиях в качестве связующего звена используются провода или кабель, которые являются управляемыми элементами (можно изменить их электрические параметры).